Heating Energy Submetering

Measuring building energy savings from metering heating energy

Agenda

Project Scope

Image property of UBC Properties Trust

Energy use in residential sector

- Established 1984 for the development of Hampton Place.
- Responsible for the development, leasing, and property managing of residential, office and retail portfolios at UBC.

Image property of UBC Properties Trust

Site D (Focal)

- Targeting REAP Cert.
- Area : 73,177 sq.ft.
- 90 residential units.
 - Studio : 47 units
 - ▶ 1 Br : 21 units
 - 2 Br :20 units
 - ► 3 Br :3 units

Image property of UBC Properties Trust

<u>Site B (Central)</u>

- REAP Certified.
- Area : 75,499 sq.ft.
- 98 residential units.
 - Studio : 60 units
 - 1 Br : 9 units
 - 2 Br :17 units
 - ▶ 3 Br :12 units

Image property of UBC Properties Trust

Sub-metering

What is energy sub-metering?

Benefits of sub-metering

Building Energy Benchmarking

What is Building Energy benchmarking?

Collecting data for similar buildings.

Building	Area (m²)	Units	2016		2017		
			Space Heating (kWh)	DHW (l)	Space Heating (kWh)	DHW (l)	Build Standard Certification
Building 1_1	7,494	95	286,347	8,033,300	365,860	8,288,200	REAP
Building 1_2	6,075	77	203,454	4,132,300	299,854	3,901,183	REAP
Building 2	5,880	70	80,386	2,996,640	92,711	4,528,412	LEED Gold
Building 3	4,084	67	155,510	266,497	190,561	270,685	LEED Gold
Building 4	7,433	84	195,569	775,968	263,963	263,963	LEED

All building utilise hydronic space heating systems.

Energy Data Analysis

Building	Area (m²)	Units	2016		2017		
			Space Heating (kWh)	SHEUI * (kWh/m ²)	Space Heating (kWh)	SHEUI * (kWh/m ²)	
Building 1_1	7,494	95	286,347	38	365,860	49	
Building 1_2	6,075	77	203,454	33	299,854	49	
Building 2	5,880	70	80,386	14	92,711	16	
Building 3	4,084	67	155,510	38	190,561	47	
Building 4	7,433	84	195,569	26	263,963	36	

* SHEUI : Space Heating Energy Use Intensity

Building a baseline model for each of the selected buildings

Building a benchmark baseline for sub-metred buildings

Building	Area (m²)	Utilization	HDD Coefficient	Intercept	SHEUI * (kWh/m ²)
Building 1_1	7,494	97.8 1%	150.51	-12996.54	49
Building 1_2	6,075	97.19%	121.19	-12285.11	49
Building 3	4,084	98.70%	79.13	-3551.48	47
Building 4	7,433	98.81%	107.08	-10343.68	36
Benchmark	6,271	98.13%	114	-9,794	45
Site-B	6,318	100 %	127	3,125	62

Adjusted Benchmark.

Building	Area (m²)	Utilization	HDD Coefficient	Intercept	SHEUI * (kWh/m ²)
Benchmark	6,271	98.1 3%	114	-9,794	45
Adjusted Benchmark	6,318	100 %	117.65	-10,073	46
Site-B	6,318	100 %	127	3,125	62

Results

Results

28 TCO₂ e

Results

Site-D space Heating Energy baseline :

E=85.57 HDD - 7325.93

Where:

E Space heating energy in kWh

HDD Heating Degree Days

Compared to Site-B baseline model (E=127 HDD + 3125), it appears that Site-D would be using much less energy for space heating than Site-B.

Conclusion

- Domestic Hot Water (DHW) consumption is consistent through out the year and doesn't vary by temperature change.
- Applying Energy submetering would result in 26.6 % reduction in Heating Energy Use Intensity.
- > A similar reduction in GHG emissions is also expected
- Applying submetering might have a positive effect on resident's behaviour leading to energy conservation

Recommendations

Recommendations

- Partial sub-metering to be applied to Site-B.
- Site-D to operate for one year on a pay per area basis, then switch to submetering.
- Facilitating residents access to their energy consumption.

Thank you !

Questions?