## Emergency Potable Water Planning for UBC

Arielle Dalley and Sarah Marshall

#### Who is involved?

- Risk Management Services
- SEEDS Sustainability Program
- Energy and Water Services
- Building Operations
- Campus and Community Planning
- Student Housing and Hospitality Services

#### Outline

- Project background and planning context
- Water filtration trailer planning
  - Background and considerations
  - Storage
  - Transportation
  - Distribution
  - Recommendations
- Increasing emergency water resilience
  - Emergency water planning assumptions
  - UBC emergency water needs: challenges and considerations
  - Increasing resilience through redundant water sources
  - Recommendations
- Summary and next steps

#### **Project Background**

What are the best solutions for getting clean water into the hands of the UBC community after a significant seismic event?

Completing the planning process for the water filtration trailer

2 Looking at additional ways to increase resilience

#### Why are we here today?

- To have a conversation about comprehensive emergency water planning, and about storage, transportation, distribution of water from the trailer.
- To understand and clarify assumptions, roles & responsibilities in the process.
- To understand and clarify what additional decisions need to be made, and potential actions for the future.
- To identify opportunities for increasing resilience.





#### Water Filtration Trailer Background

- Purchased in 2016 to increase UBC's resiliency
- Can filter up to: 120,000 L of water per day, enough for 2 L of water per day for 60,000 people
- Water drawn from creeks near the UBC Botanical Gardens





Energy and Water Services

**Building Operations** 

Student Housing and Hospitality Services

## **Existing Equipment**















Cage Tote



Water Bladders

#### **Considerations**

- Minimal Storage Space
- Minimal Maintenance
- Ability to integrate into day-to-day / Uses existing equipment
- Simplicity / Ease of Use
- Flexibility
- Minimal Cost

## **STORAGE**

#### Water Bladders

- Also known as 'pillow bladders'
- Come in a variety of sizes
  - likely 10,000 L or 20,000 L sizes appropriate
     for UBC
- Difficult to move when full
- UBC already owns 2 water bladders



#### **Onion Tanks**

- Come in a variety of sizes
  - likely 10,000 L or 20,000 L sizes appropriate for UBC
- Takes up less ground area
- Difficult to move when full



#### Water Buffalos

- Water wagons, water trailers, water bowsers
- Could be used as an intermediary storage and transportation method
- Come in a variety of sizes, up to ~20,000 L
- Would need to pump the water out at the distribution sites, as you may not want to leave the trailers at the distribution sites



Source: Snodgress Equipment

## **Cage Totes**

- Also known as Intermediate Bulk Containers
- Approximately 1,000 L
- Light when empty
- Cannot be lifted from above when full, must be lifted by forklift or auto-levelling crane attachment
- Small enough to be placed at elevated locations like loading docks, which could provide enough water pressure to distribute



## **Evaluation of Storage Alternatives**

= Partially meets consideration

= Meets consideration

|               | Minimal<br>Storage<br>Space | Minimal<br>Maintenance | Ability to<br>Integrate/<br>Uses existing<br>equipment | Simplicity/<br>Ease of Use | Flexibility | Minimal<br>Cost |
|---------------|-----------------------------|------------------------|--------------------------------------------------------|----------------------------|-------------|-----------------|
| Water Bladder |                             |                        |                                                        |                            |             |                 |
| Onion Tanks   |                             |                        |                                                        |                            |             |                 |
| Water Buffalo | $\bigcirc$                  |                        |                                                        |                            |             |                 |
| Cage Totes    |                             |                        |                                                        |                            |             |                 |

## TRANSPORTATION

## Trailer Location & Possible Distribution Sites

STUDENT RECREATION CENTRE

**TENNIS COURTS** 

WESBROOK COMMUNITY CENTRE



WATER FILTRATION TRAILER

#### Flatbed with Auto-Levelling Attachment

- Can carry up to 6 full cage totes (6,000 kgs)
- Would be utilized with the cage totes
- Would need to attach an auto-levelling attachment to the crane so that the cage totes could be lifted from below
- Could easily place cage totes on an elevated area
- May be needed for many other tasks after an emergency
- If there is a problem with the truck, we only have one other one which cannot carry as much



Source: Francois Desmarais

## **Pickup Trucks Towing Trailers**

- UBC has 12 trucks which can tow more than 10,000 kgs (which is more than enough)
- Would likely be used with the water buffalos, however they could be used to carry the cage totes if forklifts were placed by the filtration trailer and at distribution sites
- Trucks will likely be needed for many other tasks after an emergency



Source: Carletor

## Piping

- Fire hoses or some sort of piping to set up temporary connections to distribution points
- Would need a lot of piping, pumps, road crossings, etc.
- Not very easy to set up, would take a long time
- Would need fewer intermediate steps than other options



Source: TanMar Companies

## **Evaluation of Transportation Alternatives**

|                                              | Minimal<br>Storage<br>Space | Minimal<br>Maintenance | Uses<br>Existing<br>Equipment | Simplicity/<br>Ease of Use | Flexibility | Minimal<br>Cost |
|----------------------------------------------|-----------------------------|------------------------|-------------------------------|----------------------------|-------------|-----------------|
| Flatbed with<br>Auto-Levelling<br>Attachment |                             |                        |                               |                            |             |                 |
| Pickup Trucks<br>Towing Trailers             |                             |                        |                               |                            |             |                 |
| Piping                                       |                             |                        |                               |                            | $\bigcirc$  |                 |

## DISTRIBUTION

## **Simple Tapstands**

- Galvanized steel piping
- Typically has 6 to 8 taps
- Can be set up and dismantled very easily
- Does not need electricity, and may not need pumps to function if source is elevated and there is enough pressure
- Can fill a variety of container sizes



Source: Butyl Products Ltd Group

#### **DIVVY Point of Distribution Pump Station**

- Has 4 hoses to distribute water
- Fairly easy to set up
- Does have a filtration component, which is redundant considering the water filtration trailer
- Water does need to be pumped through the system because of this filtration component, but is done by hand
- Can fill a variety of container sizes





#### WaterFillz

- Water stations with 4 taps
- UBC AMS already has a contract with WaterFillz and has two setups like this, would need to purchase more
- Would cost significantly more than simple tapstands
- Redundant filtration
- Would not require a lot of setup, but does require electricity
- Does not allow for a variety of container sizes to be filled



## QuenchBuggy

- Similar to WaterFillz
- 8 taps, 4 on either side
- Redundant filtration
- Taps allow for more variety in size of containers
- Would not require a lot of setup, but does require electricity



## **Evaluation of Distribution Alternatives**

|                  | Minimal<br>Storage<br>Space | Minimal<br>Maintenance | Ability to<br>Integrate/<br>Uses Existing<br>Equipment | Simplicity/<br>Ease of Use | Flexibility | Minimal<br>Cost |
|------------------|-----------------------------|------------------------|--------------------------------------------------------|----------------------------|-------------|-----------------|
| Simple Tapstands |                             |                        |                                                        |                            |             |                 |
| DIVVY POD        |                             |                        |                                                        |                            |             |                 |
| WaterFillz       | $\bigcirc$                  |                        |                                                        |                            | $\bigcirc$  |                 |
| QuenchBuggy      |                             |                        |                                                        |                            |             |                 |

#### Recommendation



Energy and Water Services

**Building Operations** 

Student Housing and Hospitality Services

#### **Recommendations for Next Steps**

- Consider water storage, transportation and distribution options & coordinate decisions around implementation between departments
- Test the system and have regularly scheduled drills
- **Cross-train staff** on equipment, consider prioritizing campus housing for people with critical specialty training
- Evaluate how people should collect water at distribution sites
- Create a **plan for communicating water distribution** information

#### **INCREASING WATER RESILIENCE AND REDUNDANCY**

#### **Challenges: Source and demand**

- Under optimal conditions, the trailer can produce **120,000 L** per day.
- This, along with supplies on hand could meet drinking water needs, unless:
  - people are stranded or displaced for more than couple of days;
  - an earthquake occurs at a time when the campus is very busy;
  - an earthquake takes place when the streams could be dry or have very low flows; or
  - an earthquake damages the stream source, the trailer, or buildings that contain emergency water supplies.



Source: Rick Chung

#### Water planning assumptions

- Disaster and outage scenario: Campus-wide piped potable water supply outage due to a significant seismic event.
- Time scale of outage: **3-7 days.**
- Population considered: **68,000 people.** 
  - Staff: 9,250
  - Faculty: 3,396
  - Students: 54,232
  - Visitors: 1,726
- Water use per capita: **2-4 L per person per day.**
- Water quality: Should comply with Canadian Drinking Water Guidelines.

#### Water consumption



- 2011 audit, 80% of buildings
- 4 billion litres of water per year, about 10 million litres per day
- 1% or 100,000 L per day for drinking, but possibly more
- 400,000 L per day is used by the hospital, and 2,400,000 L for process cooling and research

#### What needs are being met?



cooling

#### **Increasing water source redundancy**

| Туре                                                 | Initial Cost  | Maintenance<br>Cost | Storage<br>Required | Control (no<br>outside<br>agreement<br>required) | Knowledge<br>of systems<br>and process<br>required | Possibility<br>of<br>day-to-day<br>use | Efficiency of<br>delivery |
|------------------------------------------------------|---------------|---------------------|---------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------|
| Local<br>Untreated<br>Source                         | \$ - \$\$     | Maybe               | Maybe               | Yes                                              | Yes                                                | Yes                                    | Medium                    |
| Bulk and<br>pre-packaged<br>water from<br>off-campus | \$\$ - \$\$\$ | No                  | No                  | No                                               | No                                                 | No                                     | Medium-Low                |
| Treated water<br>on site                             | \$ - \$\$\$   | Maybe               | Yes                 | Yes                                              | Yes                                                | Yes                                    | High                      |

#### LOCAL UNTREATED SOURCES

#### Creeks

- Continue to monitor creeks to ensure they continue to be viable.
- Second creek has more water (2 L / minute), but needs to be tapped, requires permit for dropping a barrel in for the intake system to pump water from the second creek to the first.
- Cross-train staff to deal with operational issues such as high turbidity (ideally 1 NTU, up to 5 NTU is acceptable).
- Consider recommendations from the complementary report to complete the planning process.



## Swimming pool

- Other universities have said that they will rely on their swimming pools for emergency water.
- The new UBC Aquatic Centre hold 4.9 million L of water, uses a pressurized diatomaceous earth tank, regenerative media filters, UV and chlorine.
- Usually within 1-3 PPM of chlorine, may require dechlorination (sodium thiosulphate) if over 4, backup generators to keep the pump filtration system working,



Source: UBC Public Affairs

#### Groundwater

- Perched aquifer 15 m below grade, 10-30 m thick, fairly impermeable; second aquifer at 50 m.
- Majority of wells on campus are monitoring wells, cross-connection wells to relieve pressure on upper aquifer not designed for production.
- Test drawdown, iron and manganese content (chemical flushing may be required).



Source: UBC Energy and Water Services

#### Blue infrastructure

- Existing rainwater cisterns CIRS, Aquatic Centre, but there are access challenges.
- Ponds Wesbrook Place, MOA, Nitobe
  - $\circ$  Access and quality issues



Source: Jennifer C.

#### BULK AND PRE-PACKAGED WATER FROM OFF-CAMPUS

#### Bulk water haulers and other trucked-in water

- Transportation of treated water, from treated reservoirs, treatment plants, or nearby utilities.
- Other universities plan to rely on this.
- Requires contracts in advance need to prevent double counting with other areas requiring emergency supplies.
- Might not be an ideal option to rely on due to UBC's potential for isolation.
- Expensive \$50,000 for a 10 day supply to Tofino during drought



# TREATED WATER ON SITE

#### **Bottled** water

- Other universities stockpile supplies: can continue to cycle through it, while keeping a certain amount on hand
- Requires storage facilities close to food and water distribution sites
- We do this at UBC, but there is a risk of supplies become inaccessible due to building damage and collapse
- Not as sustainable trying to reduce bottled water consumption.



Source: Pennsylvania National Guard

#### Existing tank water

- Might be possible to access hot water and toilet tanks in undamaged buildings, would be a good solution for residential buildings.
- Hot water tanks: Let the tank cool, place a container underneath and drain.
- Toilet tanks: Safe unless treated with chemicals



#### **Dedicated bulk storage**

- Other schools have built bulk storage plan to pump (gasoline-powered portable engine) from tank (20,000 L) via portable fire hose to drums.
- If it is built above ground, it could use gravity instead of requiring pumps.
- However, it would need to be cleaned, accessible, built to withstand a seismic event
- Requires real estate on campus- could potentially be built into a building.
- If day-to-day use is desired, needs to address existing issues of cisterns on campus would recommend less complex systems.



#### Recommendations

General:

- Look at water needs for other critical functions.
- Continue to monitor the streams.

Looking at alternate sources:

- Weigh different options and determine processes for access
  - Swimming pool as a starting point
  - Water tanks for the residential community
  - Dedicated storage for critical facilities

#### Summary and next steps

1 Completing the planning process for the water filtration trailer

- Consider water storage, transportation and distribution options and coordinate decisions around implementation.
- Update the emergency water plan accordingly.
- Conduct test runs with the equipment.
- 2 Looking at additional ways to increase resilience
- Determine desired level of service.
- Consider alternate water sources.

#### THANK YOU!