University of British Columbia

Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

East Mall Redesign - Final Detailed Design Report

Prepared by: Benny Orr, Davis Su, Hamed Barkh, Colleen Qiu, Shota Inoda, Melissa Luo

Prepared for:

Course Code: CIVL 446

University of British Columbia

Date: 20 April 2021

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a report".

UBC SUSTAINABILITY

UBC Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

East Mall Redesign – Final Detailed Design Report

Benny Orr, Davis Su, Hamed Barkh, Colleen Qiu, Shota Inoda, Melissa Luo

University of British Columbia

CIVL 446

April 20, 2021

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project/report and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a project/report".

EXECUTIVE SUMMARY

The following report contains a detailed design summary report for the UBC East Mall Redesign from Stadium Road to Agronomy Road with tie ins into the planned Stadium Neighbourhood. The project's objectives are to: (1) maximize safety, (2) minimize cost, (3) increase active mode share, (4) calm traffic, (5) increase green space to improve stormwater retention, (6) tie-in with the proposed Stadium Neighbourhood alignment, and (7) accommodate the sports field's high pick-up / drop-off (PUDO) demand.

The following document is a summary of the detailed design including a design overview, issue-for-construction drawings, cost estimate, schedule, life cycle analysis, and maintenance.

The selected design includes raised bike lanes, parking lane changes, rain gardens, curb extensions, and crosswalk upgrades along East Mall and a cantilevered steel walkway along Agronomy Road. The key considerations for the design have remained the same throughout the duration of the project, namely: client objectives, design feasibility, and stakeholder feedback. To arrive at the detailed design the following analyses were conducted: traffic analyses to inform the geometric design, a structural analysis for the walkway, stormwater analysis for rain gardens, and a life cycle analysis for determining the optimal service-life maintenance plan.

The detailed design has a Class A cost estimate of \$3,578,000 and the project is on track to be constructed between May 10th and is expected to be completed by February 1st 2022 with a median time to completion of 186 work days excluding weekends and holidays. The project's next steps include tendering the project and obtaining relevant permits and approvals.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
TABLE OF CONTENTS	2
LIST OF APPENDICES	4
LIST OF FIGURES	4
LIST OF TABLES	4
1.0 INTRODUCTION	6
1.1 Project Background	6
1.2 Team Member Contribution	7
2.0 ROADWAY DESIGN	8
2.1 Standards and Software Used	8
2.2 Design Criteria	9
2.3 Technical Considerations and Design Rationale	10
2.3.1 Plan Drawing Components	10
2.3.2 Profile Drawing Components	14
2.3.3 Section Drawing Components	14
2.4 Traffic Analysis	15
2.5 Key Components Description	17
3.0 STORMWATER INFRASTRUCTURE	20
3.1 Standards and Software	20
3.2 Design Targets	21
3.3 Rainfall Analysis	21
3.3 Evapotranspiration Analysis	22
3.4 Groundwater Analysis	23
3.5 Plants and Soil	23
3.6 Overland Flow	24
3.7 Design Description	25
3.7.1 Design Layout	25
3.7.2 Pipeline System	26
3.8 Stormwater Model	27
3.7.1 Design Model Input and Parameters	27
3.7.2 PCSWMM Results	28
4.0 PEDESTRIAN WALKWAY	29

4.2 Site Location304.3 Key Component Description314.4 Structural Analysis and Design Checks324.5 Construction Specifications334.6 Special Fabrication Requirements335.0 PROJECT MANAGEMENT355.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction375.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix C - Synchro Analysis Results TableAppendix C - Synchro Analysis Results TableAppendix C - Synchro Analysis Results TableAppendix C - Sunchro Analysis Results TableAppendix C - Pedestrian Walkway CalculationsAppendix G - Detailed Construction ScheduleAppendix G - Detailed Construction ScheduleAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	4.1 Design Standards and Criteria	29
4.3 Key Component Description314.4 Structural Analysis and Design Checks324.5 Construction Specifications334.6 Special Fabrication Requirements335.0 PROJECT MANAGEMENT355.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction355.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix D - PC SWMM / QGIS Inputs and ResultsAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix G - Detailed Construction ScheduleAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	4.2 Site Location	30
4.4Structural Analysis and Design Checks324.5Construction Specifications334.6Special Fabrication Requirements335.0PROJECT MANAGEMENT355.1Site Plan and Anticipated Issues355.1.1East Mall Construction355.1.2Pedestrian Walkway Construction375.1.3Traffic Management Plan385.2Cost Estimate and Quantity Take-Off385.2.1Capital Costs385.2.2Life Cycle Costs and Present Worth405.3Schedule415.4Service-life and Maintenance Plan425.4.1Roadway425.4.2Raid Garden475.4.3Walkway476.0CONCLUSION AND RECOMMENDATIONS486.1Summary486.2Recommendations and Next Steps487.0REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix D - PC SWMM / QGISInputs and ResultsAppendix E - Pedestrian Walkway Calculations40Appendix E - Pedestrian Walkway Calculations40Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis40	4.3 Key Component Description	31
4.5 Construction Specifications334.6 Special Fabrication Requirements3335.0 PROJECT MANAGEMENT355.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction355.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix B - Detailed Design DrawingsAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	4.4 Structural Analysis and Design Checks	32
4.6 Special Fabrication Requirements335.0 PROJECT MANAGEMENT355.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction355.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix B - Detailed Design DrawingsAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	4.5 Construction Specifications	33
5.0 PROJECT MANAGEMENT355.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction375.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix B - Detailed Design DrawingsAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix F - Quantity Takeoff and Cost EstimateAppendix F - Quantity Takeoff and Cost EstimateAppendix H - Roadway Life Cycle Analysis	4.6 Special Fabrication Requirements	33
5.1 Site Plan and Anticipated Issues355.1.1 East Mall Construction355.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix C - Synchro Analysis Results TableAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix F - Quantity Takeoff and Cost EstimateAppendix F - Quantity Takeoff and Cost EstimateAppendix H - Roadway Life Cycle Analysis	5.0 PROJECT MANAGEMENT	35
5.1.1 East Mall Construction355.1.2 Pedestrian Walkway Construction375.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix C - Synchro Analysis Results TableAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	5.1 Site Plan and Anticipated Issues	35
5.1.2Pedestrian Walkway Construction375.1.3Traffic Management Plan385.2Cost Estimate and Quantity Take-Off385.2.1Capital Costs385.2.2Life Cycle Costs and Present Worth405.3Schedule415.4Service-life and Maintenance Plan425.4.1Roadway425.4.2Rain Garden475.4.3Walkway476.0CONCLUSION AND RECOMMENDATIONS486.1Summary486.2Recommendations and Next Steps487.0REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix C - Synchro Analysis Results Table49Appendix C - Synchro Analysis Results Table49Appendix E - Pedestrian Walkway Calculations49Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis41	5.1.1 East Mall Construction	35
5.1.3 Traffic Management Plan385.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix B - Detailed Design DrawingsAppendix D - PC SWMM / QGIS Inputs and ResultsAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	5.1.2 Pedestrian Walkway Construction	37
5.2 Cost Estimate and Quantity Take-Off385.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria TableAppendix B - Detailed Design DrawingsAppendix C - Synchro Analysis Results TableAppendix E - Pedestrian Walkway CalculationsAppendix F - Quantity Takeoff and Cost EstimateAppendix G - Detailed Construction ScheduleAppendix H - Roadway Life Cycle Analysis	5.1.3 Traffic Management Plan	38
5.2.1 Capital Costs385.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table49Appendix E - Pedestrian Walkway Calculations49Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis41	5.2 Cost Estimate and Quantity Take-Off	38
5.2.2 Life Cycle Costs and Present Worth405.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table40Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis41	5.2.1 Capital Costs	38
5.3 Schedule415.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table49Appendix D - PC SWMM / QGIS Inputs and Results49Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis41	5.2.2 Life Cycle Costs and Present Worth	40
5.4 Service-life and Maintenance Plan425.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table49Appendix D - PC SWMM / QGIS Inputs and Results49Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis41	5.3 Schedule	41
5.4.1 Roadway425.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table49Appendix D - PC SWMM / QGIS Inputs and Results49Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis40	5.4 Service-life and Maintenance Plan	42
5.4.2 Rain Garden475.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings48Appendix C - Synchro Analysis Results Table49Appendix D - PC SWMM / QGIS Inputs and Results48Appendix E - Pedestrian Walkway Calculations48Appendix F - Quantity Takeoff and Cost Estimate49Appendix G - Detailed Construction Schedule49Appendix H - Roadway Life Cycle Analysis49	5.4.1 Roadway	42
5.4.3 Walkway476.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table40Appendix D - PC SWMM / QGIS Inputs and Results40Appendix E - Pedestrian Walkway Calculations40Appendix F - Quantity Takeoff and Cost Estimate40Appendix G - Detailed Construction Schedule40Appendix H - Roadway Life Cycle Analysis40	5.4.2 Rain Garden	47
6.0 CONCLUSION AND RECOMMENDATIONS486.1 Summary486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings49Appendix C - Synchro Analysis Results Table48Appendix D - PC SWMM / QGIS Inputs and Results48Appendix E - Pedestrian Walkway Calculations48Appendix F - Quantity Takeoff and Cost Estimate48Appendix G - Detailed Construction Schedule48Appendix H - Roadway Life Cycle Analysis49	5.4.3 Walkway	47
6.1 Summary486.2 Recommendations and Next Steps486.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings48Appendix C - Synchro Analysis Results Table48Appendix D - PC SWMM / QGIS Inputs and Results48Appendix E - Pedestrian Walkway Calculations48Appendix F - Quantity Takeoff and Cost Estimate48Appendix G - Detailed Construction Schedule49Appendix H - Roadway Life Cycle Analysis48	6.0 CONCLUSION AND RECOMMENDATIONS	48
6.2 Recommendations and Next Steps487.0 REFERENCES49Appendix A - Roadway Technical Design Criteria Table49Appendix B - Detailed Design Drawings48Appendix C - Synchro Analysis Results Table48Appendix D - PC SWMM / QGIS Inputs and Results48Appendix E - Pedestrian Walkway Calculations48Appendix F - Quantity Takeoff and Cost Estimate49Appendix G - Detailed Construction Schedule49Appendix H - Roadway Life Cycle Analysis48	6.1 Summary	48
7.0 REFERENCES 49 Appendix A - Roadway Technical Design Criteria Table Appendix B - Detailed Design Drawings Appendix C - Synchro Analysis Results Table Appendix D - PC SWMM / QGIS Inputs and Results Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	6.2 Recommendations and Next Steps	48
Appendix A - Roadway Technical Design Criteria Table Appendix B - Detailed Design Drawings Appendix C - Synchro Analysis Results Table Appendix D - PC SWMM / QGIS Inputs and Results Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	7.0 REFERENCES	49
Appendix B - Detailed Design Drawings Appendix C - Synchro Analysis Results Table Appendix D - PC SWMM / QGIS Inputs and Results Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix A - Roadway Technical Design Criteria Table	
Appendix C - Synchro Analysis Results Table Appendix D - PC SWMM / QGIS Inputs and Results Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix B - Detailed Design Drawings	
Appendix D - PC SWMM / QGIS Inputs and Results Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix C - Synchro Analysis Results Table	
Appendix E - Pedestrian Walkway Calculations Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix D - PC SWMM / QGIS Inputs and Results	
Appendix F - Quantity Takeoff and Cost Estimate Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix E - Pedestrian Walkway Calculations	
Appendix G - Detailed Construction Schedule Appendix H - Roadway Life Cycle Analysis	Appendix F - Quantity Takeoff and Cost Estimate	
Appendix H - Roadway Life Cycle Analysis	Appendix G - Detailed Construction Schedule	
	Appendix H - Roadway Life Cycle Analysis	

LIST OF FIGURES

- Figure 1.1 Project Study Area
- Figure 2.1 Intersection Sightline Check Example
- Figure 2.2 Proposed Roadway Transition at Stadium Road
- Figure 2.3 Transit Stop Bicycle Bypasses
- Figure 2.4 Swept Path Example Stadium Road
- Figure 2.5 Eagles Drive to Thunderbird Blvd Cross Section
- Figure 3.1 Typical Cross-section of Rain Garden
- Figure 4.1 Plan View of Pedestrian Walkway
- Figure 4.2 Rendering of the Pedestrian Walkway
- Figure 4.3 Tapered Cantilever Beam
- Figure 4.4 Beam Sleeve Connection
- Figure 5.1 East Mall Phasing
- Figure 5.2 Sample SIte Layout Phase A.2.2 East Side Construction
- Figure 5.3 Phase B Covered Walkway Staging
- Figure 5.4 Schedule
- Figure 5.5 Design Pareto Frontiers
- Figure 5.6 Cost and GWP for Best Design
- Figure 5.7 1000 Deterioration Simulations for Selected Design (SN 2.76)
- Figure 5.8 Cumulative Probability of First Maintenance

LIST OF TABLES

- Table 1.1
 Team Member Contribution
- Table 2.1
 Standards and Guidelines Referenced in Roadway Design
- Table 2.2
 Software in Roadway Design
- Table 2.3
 Key Design Criteria in Roadway Design
- Table 2.4 Design Vehicles
- Table 2.52040 Synchro Results Summary
- Table 2.6 Left-Turn Lane Analysis 2040 Weekday Peaks
- Table 2.7
 Roadway Design Specifications Table
- Table 3.1
 Standards and Guidelines Referenced in Stormwater Design
- Table 3.2
 Software in Stormwater Design
- Table 3.3
 Summary of the Three Rainfall Scenarios
- Table 3.4
 Growing Medium Specifications
- Table 3.5Summary of GSI
- Table 3.6
 Summary of Pipeline Components
- Table 3.7Target Results
- Table 4.1
 Key Walkway Component Description
- Table 4.2
 Demand and Capacity Summary
- Table 5.1
 East Mall Construction Issues and Mitigation Issues

- Table 5.2
 Walkway Construction Issues and Mitigation Issues
- Table 5.3Cost Estimate
- Table 5.4
 Potential Factors Affecting Final Cost
- Table 5.5Life Cycle Costs
- **Table 5.6** Median Time to First Maintenance, Average Maintenance Over 50 Years
- Table 5.7
 Rain Garden Typical Maintenance

1.0 INTRODUCTION

1.1 **Project Background**

UBC SEEDS is currently developing a detailed design for the East Mall Redesign Project. A preliminary design was developed in December 2021 which included the addition of protected bike lanes and rain gardens along East Mall, and a steel cantilevered walkway along Agronomy Rd. For the detailed design stage, a design was developed that addresses the client objectives of: (1) maximizing safety, (2) minimizing cost, (3) increasing active mode share, (4) calming traffic, (5) increasing green space to improve stormwater retention, (6) tying in with the proposed Stadium Neighbourhood alignment, and (7) accommodating the sports field's high PUDO demand.

The existing East Mall corridor from W16th Ave to Agronomy Rd (**Figure 1.1**) consists of a right-of-way (ROW) ranging from 25 m to 38 m. Each direction has a 50 km/h speed limit; is separated by a median / yellow paint markings; and consists of unidirectional vehicle and bike lanes, parking facilities / PUDO areas, sidewalks, and planting strips. The northbound direction incorporates left-turn bays at Stadium Rd and Eagles Dr.

Figure 1.1: Project Study Area

1.2 Team Member Contribution

Below is a table describing contributions by individual team members for the development of the preliminary design. In the event questions arise, it is best to contact the party responsible for that aspect of the design.

Team Member	Design Responsibilities	Report Preparation
Benny Orr	 Prepare roadway design technical specifications per codes / standards Research roadway layers Build Civil 3D corridor model and prepare production drawings Generate quantity reports pertaining to roadway design 	Edited Section 2.0
Colleen Qiu	 Prepare roadway design technical specifications as per codes and standards Research roadway layers Build Civil 3D corridor model and prepare production drawings (Plan, Profile, Section) 	 Drafted Section 2.1, 2.2, 2.3, and 2.5 Reviewed Section 3.0
Davis Su	 Cost Estimate Construction Plan and Sequencing Walkway Connection Design and Drawings AutoTurn analysis 	 Drafted Section 2.4, 4.6, 5.1, 5.2, 6.0 Reviewed Section 4.0
Hamed Barkh	 Roadway Life Cycle Analysis Roadway Maintenance Schedule Walkway, Rain Garden, Maintenance Plans Schedule Overland flow modelling 	 Drafted Executive Summary, Section 5.3, 5.4 Reviewed Section 2.0
Melissa Luo	 Pedestrian walkway design and analysis Walkway detailed drawings Walkway technical specifications Walkway 3D modelling 	Drafted Section 4.0Reviewed Section 6.0
Shota Inoda	 Stormwater design and analysis Stormwater detailed drawings Pipeline system layout and design PCSWMM stormwater model 	Drafted Section 3.0Reviewed Section 5.0

Table 1.1: Team Member Contribution

2.0 ROADWAY DESIGN

2.1 Standards and Software Used

Throughout the roadway design process, guidelines in various categories were referenced for

both parametric and qualitative considerations as shown in Table 2.1 and 2.2.

Table 2.1: Standards and Guidelines Referenced in Roadway Design						
Guideline / Standard	Version / Year					
Geometric Design Guidelines						
TAC Geometric Design Guide for Canadian Roads (Chapter 2-6, 9)	June 2017					
BC Supplement to TAC Geometric Design Guide for Canadian Roads	April 2019					
BC Active Transportation Design Guide ("ATDG")	2019					
Pavement Design Guidelines						
AASHTO Guide for Design of Pavement Structures	1993					
BC MoTI Pavement Structure Design Guidelines	2015					
Toronto Transportation Services - Pavement Design and Rehabilitation	2010					
Guideline	2019					
Other Guidelines for General Reference						
City of Vancouver Engineering Design Manual	V1 (2019)					
City of Vancouver Construction Specifications	V1(2019)					
City of Vancouver Standard Detail Drawings - Roadworks	Sep 2018					
City of Surrey Supplementary Master Municipal Construction Documents	April 2020					
UBC Vancouver Campus Plan - Part 3 Design Guidelines	Oct 2020					

Table 2.2: Software in Roadway Design

Software	Project Application				
Synchro 6	The study area was modelling to determine link and node LOS, delay,				
Synchio	and V/C. Modelling results informed our left-turn bay design decisions.				
	AutoCAD was used to create preliminary plan drawings of the roadway				
	and to add markups to the detailed design drawings.				
Autodesk Civil 3D	Civil 3D was used for corridor modelling and IEC drawing production				
2021	Civil 3D was used for corrigor modelling and IFC drawing production.				
AutoTurn 11 Demo	A swept path analysis using AutoTurn was conducted on the roadway				
	to verify turning movements, vehicle path feasibility, and parking.				
Pave-Save (Shani	Various pavement designs were input into the LCA model to determine				
et al. 2021)	the optimal asphalt thickness.				

2.2 Design Criteria

Based on the guidelines and standards listed in Section 2.1 and the client's objectives, the key

design criteria below were identified for each design component as shown in Table 2.3. The

bolded criteria are design input determined by our engineering team after discussion with the

client. For the full technical specification table, please see Appendix A.

Design Component	Key Design Criteria
Travel Lane	 Design vehicle: WB-20 Design speed: 50 km/h Minimum horizontal radius = 100 m (per TAC) for 50 km/h roads with 2% superelevation Minimum K factor = 7 and Maximum grade = 6% (per TAC) Minimum width = 3.3 m to 3.7 m for rural roadways with buses and larger trucks (per TAC) Synchro: Projected volumes meet Level of Service > D and V/C Ratio < 1
Parking Lane	 Typical width = 2.4 m (per TAC) Relieve parking stress
Bicycle Through Zone	 Design cyclist speed = 30 to 35 km/h Minimum horizontal radius = 24 to 33 m (per TAC) for 30-35 km/h with 2% superelevation Desired width = 2.0 m for uni-directional bike lanes with <150 bikes/hr (per ATDG) - available counts at Thunderbird Blvd shows <40 bikes/hr (CTS counts from client) Desirable concrete buffer width = 0.6 m (per ATDG) Maximum superelevation = 2% for universal accessibility (per TAC & ATDG)
Landscape Zone	 Minimum width = 1.5 m for furnishing zones with larger trees (per ATDG) Recommended width = 2.0 m for basic furnishing zones (per ATDG)
Pedestrian Through Zone	 Desired width = 2.4 m for a collector road next to multi-family residential land use (per ATDG)
Safety Components	 Recommended setback distance from road edge = 4.4 m (per TAC) For 50 km/h design speeds, stopping sight distance = 65 m (per TAC) Curb extension: Transition curve radius between the main and extended curb shall contain a 3-5 m radius for street cleaning vehicles to maneuver properly
Pavement Structure	 Typical Pavement Structure Type C: Low Volume & Subdivision Roads (20 yr Design ESAL < 100,000): 50 - 75 mm AP, 225 mm of 25mm CBC, 300 mm min. of SGSB on Fine Grained Soil per BCMoTI Pavement Structure Design Guidelines ESAL calculated based on CTS traffic counts provided by client AP thickness selected based on life cycle analysis considering

Table 2.3: Key Design Criteria in Roadway Design

road and pavement layer parameters
• Typical bike lane pavement thickness: 50 mm AP and 150mm Granular Base
(per CoV)
 Smooth concrete finishes on sidewalk pavement (per UBC)

2.3 Technical Considerations and Design Rationale

2.3.1 Plan Drawing Components

Intersections: When designing the horizontal alignment of the road, we paid special attention to the stopping-sight-distance (SSD) at intersections to ensure safety of road users. SSD is the distance required for vehicles to react, brake, and come to a stop, which is typically taken as 65 m for a 50 km/hr design speed. The placement of parking zones and curb extensions was decided based on sightline checks per the Transportation Association of Canada (TAC) *Geometric Design Guide, 2017* as shown in **Figure 2.1**. Landscaping and parked vehicles that can obstruct driver view should be avoided in the "clear sight triangles" as shown in **Figure 2.1**.

Figure 2.1: Intersection Sightline Check Example

Curb Extensions: Curb extensions of 5 m radius were placed to mark parking termination points, narrow pedestrian crossing widths to reduce probability of collisions, and allow for smooth maintenance vehicle maneuvers during periodic roadway cleaning.

Stadium Road Transition: When transitioning from a 25.5 m right-of-way (ROW) to a 35.0 m one, the lanes have been curved at a radius of 100 m at Stadium Road as a speed control measure as shown in **Figure 2.2**.

Figure 2.2: Proposed Roadway Transition at Stadium Road

Bicycle Lane Transition and Bypass at Transit Stops: Two design speeds and horizontal alignment curvature radius were considered for the bike lane design due to the roadway grade (uphill / downhill). The northbound direction going uphill from W16th Ave to Thunder Blvd along East Mall features a 24 m horizontal radius curvature at a 30 km/h design speed. The

southbound direction going downhill from Thunderbird Blvd to W16th Ave features a 30-33 m horizontal radius curvature at a 35 km/h design speed. The wider horizontal radius curvature allows cyclists to perform safer turning maneuvers at transition points / bicycle bypasses while travelling at greater downhill speeds.

The existing community shuttle bus stops at Eagles Drive will also be upgraded to incorporate a bicycle bypass (outlined in TAC *Geometric Design Guide, 2017* Section 5.7.4) as shown in **Figure 2.3**. This is based on the consideration of potential conflicts between embarking/disembarking bus passengers with cyclists when busses stop adjacent to the protected bike lane without a transit island. Hence, a transit island with a 2.3 m width is added to address this conflict. Crossings with clear markings, pavement treatment, and signages will mitigate the conflict between the cyclists and the pedestrians crossing to the island by enhancing crosswalk visibility.

Figure 2.3: Transit Stop Bicycle Bypasses

Left-Turn Bays: The existing left-turn bay is removed at Stadium Road to make room for the Stadium Neighbourhood developments. All other existing left-turn bays have been maintained along East Mall. A capacity analysis was conducted for left-turn bay requirements along the corridor and is further discussed in **Section 2.4**.

Turning Radius and Swept Path Analysis: A swept path analysis was conducted using

AutoTurn, a software that allows 2D simulation of vehicle movement paths. The analysis was used to verify the feasibility of turning movements, vehicle paths, and parking maneuvers on the road designs. Analysis is typically done using representative design vehicles developed by TAC. However, due to trial software limitations, only the DEMO vehicle was available. The vehicle was rescaled to approximately match the TAC design vehicles (example shown in **Figure 2.4**). Design vehicles used are listed in **Table 2.4**. A minimum 0.5m vehicle clearance can be maintained for all necessary vehicle movements.

Vehicle	Description
TAC WB-20	Largest design vehicle. Note: As East Mall is not a truck route, curb radii and left-turn bays were not designed for WB-20 maneuvers. In locations where WB-20 maneuvers are necessary, standard large truck maneuvers (e.g. using adjacent lanes for turns, oversteer turns, driving on lane lines) were considered acceptable.
TAC P	Passenger vehicles used to verify turning movements, vehicles paths, and parking.
TAC MSU	Medium trucks used to verify turning movements, vehicle paths, and parking.

Table 2.4: Design Vehicles

Figure 2.4: Swept Path Example - Stadium Road

2.3.2 Profile Drawing Components

Since the elevation change along East Mall is relatively small, maximum grade is not a concern for automobiles or bicycles. Since a 2% cross slope is adopted, a minimum longitudinal grade is not mandatory for drainage. Crest curves have to be flat enough to provide sufficient sight distances, and these sight distance considerations are accounted for in the K-value limits. Since the road base is in good condition, the existing road profile has been maintained as much as possible to reduce costs.

2.3.3 Section Drawing Components

Drainage and integration with stormwater infrastructure are the main considerations in section design. A cross slope (or superelevation) of 2% has been implemented in all the sections as shown in **Figure 2.5**. When a centre rain garden is present, both sides of the roadway are slanted towards the rain garden. From West 16th Ave to Stadium Road where there is no rain garden, the roadway is sloped towards the curb and gutter by the elevated bike lane. Pavement layer materials and thickness are determined based on 20-year design Equivalent Single Axle Load (ESAL) (see **Table 2.3**), industry standards, and a life cycle analysis (see **Section 5.4.1**). The Contractor is responsible for the asphalt concrete mix design.

Figure 2.5: Eagles Drive to Thunderbird Blvd Cross Section

2.4 Traffic Analysis

To evaluate the proposed roadway design, traffic analysis was conducted using Synchro 6, a software that analyzes road capacity, vehicle delay, and queue lengths to analyze 2040 traffic growth. 2040 AM and PM peak vehicle Level of Service (LOS), delay, and volume-capacity (V/C) ratio were found for the five intersections along East Mall as shown in **Table 2.5** and in greater detail in **Appendix C**. Traffic volumes used were from Bunt's *Stadium Neighbourhood Planning Traffic Analysis (2020)* report as well as data provided by the client from Creative Transportation Solutions. All intersections were found to operate overall at LOS C or better.

Intersection		2040 AM		2040 PM				
mersection	LOS	Total Delay (s)	Max V/C	LOS	Total Delay (s)	Max V/C		
Agronomy Rd	В	10.7	0.42	В	12.1	0.53		
Thunderbird Blvd	С	25	0.91	С	20.6	0.79		
Logan Ln	A	0.1	0.41	А	0.1	0.37		
Eagle Dr	A	0.2	0.4	А	0.2	0.37		
Stadium Rd	A	4.9	0.62	A	6.3	0.53		

Table 2.5: 2040	Synchro	Results	Summar	У
-----------------	---------	---------	--------	---

There are potential capacity issues at Thunderbird Blvd, with a 0.91 V/C in the northbound through movement. The analysis assumes moderate vehicle growth into 2040. Given UBC's travel mode strategy, vehicle growth will likely be lower than modelled, meaning active transportation oriented policies may be a viable strategy as opposed to roadway expansions.

Left Turn-Bay Analysis: A capacity analysis of left-turn movements along the corridor was conducted in Synchro. A major consideration was the 95th percentile queue length, a value that represents the highest queue reasonably expected with a 1/20 chance of occurrence. Additionally, per the *Highway Capacity Manual 2000*, left-turn bays are typically considered when turning vehicles approach 100 vehicles and should be verified with a capacity analysis. A summary of findings is provided below, with analysis results shown in Table 2.6:

- Longer queues are expected for the northbound AM and southbound PM movements at Thunderbird Boulevard where there are no left-turn bays. However, the low peak hour left turn volumes do not justify a left turn bay (36 NB AM and 6 SB PM vehicles).
- Although Stadium road is expected to have left-turn volumes greater than 100 during the 2040 AM and PM peaks, minimal disruptions to traffic queues and LOS are expected,

meaning a left-turn bay removal is acceptable.

	2040 AM			2040 PM				
Intersection Left	Left Turn		95th Perc.	Existing	Left Turn		95th Perc.	Existing
Turn Approach	Volume	LOS	Queue (m)	Storage (m)	Volume	LOS	Queue (m)	Storage (m)
Thunderbird Blvd NB	36	С	#146.9**	N/A	20	В	24.4**	N/A
Thunderbird Blvd SB	42	В	15.1**	N/A	6	С	#81.2**	N/A
Thunderbird Blvd EB	4	В	21.4**	N/A	15	А	18.5	N/A
Thunderbird Blvd WB	190	В	#46.4	50	57	В	#62.0**	50
Eagle Dr NB	7	А	0.1	40	9	В	0.2	40
Stadium Rd NB	111	Α	4	40*	223	Α	10.3	40*
*Stadium road northbound left-turn bay to be removed for new neighbourhood alignment. Due to the limitations of								
Synchro, the delay and LOS results were not found to change								
**For intersections without left-turn bays, queue lengths are for the combined left-through movement.								

Table 2.6: Left-Turn Lane Analysis - 2040 Weekday Peaks

2.5 Key Components Description

Key dimensions of lane widths, horizontal radius, superelevation, longitudinal gradient, K-values of vertical curves as well as pavement layers are specified in **Table 2.7**. Note that existing curb and sidewalk letdown placements and dimensions are maintained where possible. For detailing of other roadway components such as signages and lightings, please refer to municipal design standards. Detailed plan, profile, and section drawings as well as references to relevant roadway component standard detail drawings from municipalities are included in **Appendix B**.

Table 2.7: Roadway Design Specifications Table

Location (S to N)	Pedestrian Through Zone	Bicycle Through Zone	Parking Lane	Vehicle Lane	Median	Landscape Zone				
W16th Ave	Proposed design to tie-in with the ex	isting intersection (roundabout controlled) as per the client's	scope		•					
	Designed as per the schematic cross section layout provided by the client									
L1000-Line	 Width: 2.35 m (East Side - E) and 2.4 m (West Side - W) Separated from bike lane with 	 Width: 2.2 m Unidirectional and elevated (height = 0.15 m) Separated from sidewalk and parking lane with 	 Width: 2.5 m 6 paid parking stalls converted to 5-minute 	 Width: 3.3 m 2% superelevation towards curb 	Removed to accommodate narrow 25.5 m ROW	 ➢ Width: 1.8 m (E) and 1.75 m (W) ➢ 2% superelevation 				
W16th Ave -	landscape zone	landscape zone and concrete buffer, respectively	pick-up / drop-off spots			towards curb				
Stadium Road	2% superelevation towards curb	Concrete buffer width: 0.6 m	> 2% superelevation			Street lights placed on E				
		2% superelevation towards curb	towards curb			at 45 m interval and 0.5				
ROW = 25.5 m						m from edge near road				
	K-value of crest/sag curves: ranges from 16.20 to 118.75 (identical profiles in both directions)									
	Longitudinal gradient: ranges fro	m 0.74% to 1.47% (identical profiles in both directions)								
	Control Type: Stop									
	Iransition from 25.5 m to 35 m F	ROW: Vehicle lane horizontal radius = 100 m (NB)	huard off Trume David Analysia)							
Stadium Road	LI bay removed as supported by Curb extension (radius = 5 m) with	synchro analysis (see Section 2.3 - Traffic Analysis in Synch	nro: Leπ Turn-Bay Analysis)							
	 Curb extension (ladius - 5 m) with Pectangular Flas Crosswalk with Pectangular Flas 	In Taill garden (E) and concrete (W) used to harrow crossing the Beacon (PPER) and paint markings to improve safety	Justance							
	 Proposed sidewalk letdown on e 	ast side (see CoV Standard Detailed Drawings R4 1, R4 2, a	and R7 1 for details)							
l 1100/1200-l ine	Width: 2.6 m (E) and 2.4 m (W)	Width: 2.3 m	\searrow Width: 2.5 m	> Width: 3.5 m	> Width: 9 m	Width: 2.4 m (E only) to				
	 W side is adjacent to bike lane 	\rightarrow Unidirectional and elevated (height = 0.15 m)	> 2% superelevation	> 2% superelevation	 Median converted to rain 	preserve existing ROW				
Stadium Road -	 E side is separated from bike 	 Separated from parking lane with concrete buffer 	towards rain garden	towards rain garden	garden	(existing condition do not				
Parking Lot	lane with landscape zone	Concrete buffer width: 1.0 m	(road centre)	(road centre)		have landscape zone on				
Entrance (W)-	\succ 2% superelevation towards rain	> 2% superelevation towards rain garden (road centre)				W side)				
Eagles Drive	garden (road center)									
	K-value of crest/sag curves: rang	ges from 225.28 to 299.21 from south to north and 29.48 to 7	1.38 from north to south							
ROW = 35 m	Longitudinal gradient: ranges fro	m 0.75% to 1.41% from south to north and -0.59% to -1.64%	from north to south							
Parking Lot	Control Type: Stop and curb external	ension radius: 5 m								
Entrance (W)	LT bay storage length and width	to be maintained, but shifted towards the median to minimize	e project cost and allow for fu	uture volume growth from	new developments					
	No crosswalk provided (same as	existing conditions)								
	Control Type: Stop	to be maintained, but abifted towards the median to minimiz	a project cost and allow for fu	ture velupes arouth from	nou douolonmento					
	 Li bay storage length and width Curb extension (radius = 5 m) with 	to be maintained, but shifted towards the median to minimize	e project cost and allow for it	ature volume growth from	new developments					
	\sim Crosswalk with Rectangular Flas	the Beacon (RRFR) and paint-markings to improve safety								
Eagles Drive	 Proposed sidewalk letdown on e 	ast side (see CoV Standard Detailed Drawings R4 1 R4 2 a	and R7 1 for details)							
	The existing community shuttle b	bus stop locations (NB and SB) are maintained, but will be m	odified to incorporate a bicvc	le bypass configuration ("scissors transit stop")					
	 East side bicycle bypa 	ass horizontal radius: 24 m		() (,					
	 West side bicycle byp 	ass horizontal radius: 30 m								
1 1100/1200 Line	➢ Width: 2.6 m (E) and 2.4 m (W)	➢ Width: 2.3 m	Width: 2.5 m	Width: 3.5 m	> Width: 9 m	Width: 2.4 m (E) and 3				
LIIUU/IZUU-LIIIU	Separated from bike lane with	Unidirectional and elevated (height = 0.15 m)	2% superelevation	> 2% superelevation	Median converted to rain	m (W)				
Fagles Drive -	landscape zone	Separated from sidewalk and parking lane with	towards rain garden	towards rain garden	garden	2% superelevation				
Logan Lane - 2% superelevation towards rain landscape zone and concrete buffer, respectively (road centre) (road centre) toward										
Thunderbird Blvd	garden (road centre)	Concrete buffer width: 1 m				(road centre)				
		$\geq 2\%$ superelevation towards rain garden (road centre)	400 40 frame results to an it			I				
ROW = 38 m	K-value of crest/sag curves: range Longitudingl gradient: ranges from	jes from 155.32 to 299.21 from south to north and 161.16 to 0.61% to 1.16% from south to parth and 1.04% to 0.47%	493.49 from north to south							
		111 0.01 /0 to 1.10 /0 110111 South to horth and -1.04% to -0.47%								

*Note: Notations such as "L1000-Line" refer to horizontal alignment lines in accordance with the design drawings (see Appendix B).

	Control Type: Stop					
	Maintain existing right-in / right-out movements from East Mall to Logan Ln and vice versa					
Logan Lane	No crosswalk provided as blocke	d by median (same as existing conditions)				
	Parking stalls removed for the we	estside of East Mall between Logan Ln and Thunderbird Blvd	d to provide bike lane transitio	on that is at-grade with th	ie vel	
	Control Type: Signalized					
	Maintain existing overhead traffic	signals on all corners				
	> Transition from the proposed to ϵ	existing alignment:				
Thunderbird	 Vehicle lane horizonta 	al radius = 550 m (SB)				
Boulevard	 Bike lane horizontal ratio 	adius = 24 m (NB) and 33 m (SB)				
	> No NB LT bay provided because	existing wide medians on both the north and south sides of	the intersection are sufficient	to accommodate vehicle	es wa	
	Curb extension (radius = 5 m), next to which elevated bike lane drops off into separated bike lane with paint-markings for NB direction and vice versa for					
	Maintain crosswalk on all approa	ches (same as existing conditions)				
L1300 to 1600-Line	The existing road configuration is preserved. However, paint-markings and median need to be modified to tie in with the modified configuration before Thun					
	➢ Width: 2.9 m (E) and 2.0 m (W)	➤ Width: 1.6 m	≻ None	➤ Width: 3.5 m	>	
Thunderbird Blvd -	Separated from bike lane with	Unidirectional and at road grade			6	
Agronomy Road	landscape zone	Separated from vehicle lane with paint-marking only			i	
	K-value of crest/sag curves: maintains existing					
ROW = 24 m	Longitudinal gradient: maintains existing					
Agronomy Road	d The existing intersection configuration is maintained					
	100 mm Concrete Pavement	> 50 mm Asphalt Pavement (AP) and 150 mm Granular	▶ 75 mm AP	➤ 75 mm AP	> 3	
Pavement	with light broom finish	Base (GB)	Existing CBC and	Existing CBC and	1	
Structure			SGSB maintained	SGSB maintained		
			where possible	where possible		

hicle lane	
siting to turn loft	
arting to turn leit	
nderbird Blvd.	
None except immediately	➢ Width: 2.4 m (W) and
after Thunderbird Blvd	6.5 m (E)
intersection	
Sandy loam as top soil for vegetation	 Sandy loam as top soil for vegetation

3.0 STORMWATER INFRASTRUCTURE

As the population of UBC grows, the trend of densification has resulted in loss of greenery. Combined with the effects of climate change, this can result in increased flooding, habitat depletion, and pollution in the water system. UBC's Integrated Stormwater Management Plan has indicated concerns for East Mall between Thunderbird Blvd and West 16th Ave, stating "continued source-point controls will be important for any new development". By implementing Green Stormwater Infrastructure (GSI), peak runoffs may be reduced by absorbing excess

water, and runoff water quality may be improved by filtering stormwater. This section provides a description of the Green Stormwater Infrastructure design implemented in our design.

To reduce the risk of flooding, reduce untreated stormwater discharge, and increase greenspace, a center median rain garden is proposed along East Mall from 16th Ave to Thunderbird Blvd. The design retrofits the pre-existing large center median on East Mall with a rain garden.

3.1 Standards and Software

Throughout the GSI design process, guidelines in various categories were referenced for both parametric and qualitative considerations as shown in Table 3.1.

Table 3.1. Standards and Guidennes Referenced in Stormwater Design				
Guideline / Standard	Year of Release			
GSI Design Guidelines				
Fisheries and Oceans Canada Guidelines	2001			
City of Vancouver's Rainwater Infrastructure Guideline	2018			
Metro Vancouver Stormwater Source Control Design Guidelines	2012			
Vancouver Campus Plan Design Guidelines Part 3	2010			
Pipeline Design Guidelines				
UBC Technical Guidelines Section 33 49 00	2020			

Table 3.1: Standards and Guidelines Referenced in Stormwater Design

 Table 3.2 presents the various softwares used for the stormwater design.

Software	Project Application			
	The study area was modelling using PCSWMM to analyze the run-off and			
FCSVIVIVI	infiltration rates.			
AutoCAD 2020	AutoCAD was used to create detailed plan drawings of the rain garden			
	and to add markups to the detailed design drawings.			
QGIS	Overland flow was modeled using QGIS to determine the degree of			
	overland water accumulation			

Table 3.2: Software in Stormwater Design

3.2 Design Targets

Below are the design objectives set for our project following the Fisheries and Oceans Canada

Guidelines and City of Vancouver's Rainwater Infrastructure Guidelines.

- Collect and treat the volume of the 6-month/24-hour precipitation event equalling 90% of the total rainfall from impervious areas with suitable Best Management Practices (BMPs).
- 2. Reduce post-development flows to pre-development levels for the 6-month/24- hour,

2-year/24-hour, and 5-year/24-hour precipitation events.

3. Remove 80% of total suspended solids from the first 24 mm of rainfall from all previous and impervious surfaces.

3.3 Rainfall Analysis

To analyze the effectiveness of the GSI design implemented in the East Mall Redesign Project, 3 rainfall scenarios with different durations were used. A summary of the rainfall events are shown on **Table 3.3**. The following points were considered when obtaining our 3 rainfall scenarios:

- IDF (Intensity-Duration-Frequency) curves were obtained from IDF_CC Tool 4.0 by Western University. The curves represent a climate model with a time period ranging from 2006 to 2100. This accounts for the effects climate change on future rainfall events.
- SCS Type 1A curve with a time interval of 6 mins was used to replicate a typical rainfall distribution. The SCS Type 1A was developed by the Soil Conservation Service. Type 1A storms represent pacific climates with wet winters and dry summers.
- A 6-month/24-hour precipitation event was assumed to be 72% of the 2-year, 24-hour event volume.

The distribution of rainfall for each scenario is summarized in **Table 3.3**. Climate change was considered for all IDF curves to accurately model future scenarios. The 3 IDF curves were chosen to depict practical scenarios which East Mall will commonly experience.

Scenario	Model	Intensity-Duration-Frequency	Time (h)	Total rainfall (mm)
1	SCS Type 1A	6-month 24-hour (under climate change)	24	41.0
2	SCS Type 1A	2-year 24-hour (under climate change)	24	56.9
3	SCS Type 1A	5-year 24-hour (under climate change)	24	72.19

Table 3.3: Summary of the Three Rainfall Scenarios

3.3 Evapotranspiration Analysis

Daily evapotranspiration (ET) data provided by Environment and Climate Change Canada at the Vancouver Airport station was chosen for evapotranspiration analysis because of its proximity to UBC. The effects of climate change were ignored during the analysis. While climate change will likely increase air temperature, the effects of higher humidity and CO2 concentrations are expected to counteract the effects due to rise in temperature (Snyder et al., 2011). For our model, the annual average evapotranspiration of 1.9 mm/day was used. Monthly ET values are provided in **Appendix B**.

3.4 Groundwater Analysis

The water table at UBC was indicated to be typically greater than 45 m below ground level (Piteau Associates Engineering., 2002). Due to the deep water table, the water table is assumed to have negligible impact on the infiltration of surface runoff during the analysis. However, due to a layer of low permeability till just below the topsoil, there is potential for water to pool over this layer during heavy rainfall events. The increasing number of impermeable surfaces such as roads and parking lots have further aggravated the problem by causing more demand for water infiltration in permeable areas.

The thickness of the till layer varies along East Mall. There are concerns that the till layer may be thicker than anticipated below the rain garden which may cause lower infiltration rates than anticipated. It is recommended that the contractor conducts boreholes tests to a depth of up to 15m to assess if excavating a portion of the till is necessary.

3.5 Plants and Soil

Green stormwater infrastructures such as rain gardens can remove pollutants from runoff flows. Plants rooted into the soil slow the flow of runoff, allowing the pollutant particles to settle, which are then incorporated into the soil where it is immobilized and/or decomposed. Deeper topsoil helps with plant resiliency and water retention due to the roots reaching further down into the soil. A soil depth of 450 mm is assumed to meet the 80% TSS removal target set for this project and therefore is the recommended soil depth for the rain garden and absorbent landscape. We also recommend a minimum of 10% organic matter to increase the water carrying capacity and promote healthier plants that are more resilient to pests. **Table 3.4** identifies the growing medium properties for the rain garden.

g means of ended					
Particle Size	Percent of dry weight				
Gravel	0%				
Sand	45-60%				
Silt	20-30%				
Clay	15-30%				
Organic Content	10-15%				

 Table 3.4: Growing Medium Specifications

50 mm of mulch is recommended to cover the exposed soil in the rain garden to reduce erosion and prevent weeding. The mulch must be medium-size to ensure it is not too large that it floats or too small that it reduces infiltration. Mulch shall be replaced a minimum of once a year to prolong the life expectancy of the rain garden. The gravel storage below the growing medium must have a void ratio of 0.75 and contain only materials in the range of 9mm to 20mm. The detailed drawing of the rain garden profile is provided in **Appendix B**.

Flood tolerant, tall growing plants such as red-osier dogwood, Labrador tea, and Spiraea douglasii are recommended for the rain garden. The rain garden should have a mixture of different colours to improve the aesthetics and attract wildlife. For information on maintenance strategies refer to **Section 5.4.3**.

3.6 **Overland Flow**

Overland flow was modelled using the kinematic wave D8 algorithm in QGIS (Johnson, D. L., & Miller, A. C. 1997) to determine the accumulation of stormwater on East Mall. The model used 8,802,667 lines of x, y, z data from Abacus (University of British Columbia. Campus and Community Planning. 2015) to interpolate a digital elevation model of UBC Vancouver campus. A homogeneous rainfall over the entire region was analyzed for a 24 hour period with 6 minute

time steps. Results indicated that there was some accumulation at the bottom of East Mall near

16th Ave. However, major overland flow accumulation was not a concern. A figure showing the

flow accumulation on East Mall is presented in Appendix D.

3.7 Design Description

3.7.1 Design Layout

Rain gardens and absorbent landscapes are the two GSIs implemented on East Mall

(descriptions in Table 3.5).

GSI	Description
Absorbent Landscape Area: 9955m ²	 450mm deep topsoil which is assumed to remove over 80% of total suspended solids (TSS) American sweet gum trees planted along absorbent landscape Podzol soil underneath the topsoil
Rain Garden Area: 1789m²	 450 mm deep growing and infiltrating medium (sandy loam) which is assumed to remove over 80% of total suspended solids (TSS). A 200 mm deep gravel layer beneath the soil and a 190mm diameter PVC pipe connecting the rain garden to the main storm sewer. The side slopes are 200 mm high to allow water to pool before flooding over to the road. Maximum slope of 20% Plants used: Red osier dogwood, labrador tea, sweet gale, douglas spirea, lyngby's sedge, slough sedge, beaked sedge, small-flowered bulrush Maximum overflow structures spacing of 10m At the widest cross-section between eagles and Thunderbird the rain garden is 4.8m wide with 2.1m absorbent landscape buffer zones between the rain garden and the paved road

Table 3.5: Summary of GSI

A section view of the GSI is presented below in Figure 3.1 and in further detail in Appendix B.

Figure 3.1: Typical Cross-section of Rain Garden

Based on UBC's ISMP and **Section 3.6**, the primary concern for stormwater was between 16th Ave and Thunderbird Blvd. North of Thunderbird Blvd was determined to be "well drained and only presents minor flooding" by UBC's ISMP. The layout which was designed to effectively capture stormwater is presented in **Appendix B**.

3.7.2 Pipeline System

The storm sewer design followed UBC Technical Guidelines. Overflow structures connect the rain garden to the main stormwater drainage system, conveying any overflow the rain garden is not able to infiltrate. Manholes are placed throughout the system to enable inspections and maintenance operations. The original stormwater system was kept and only portions near the rain gardens were modified to connect the overflow structure to the main pipeline. **Table 3.6** describes various components of the stormwater system. The locations of the pipeline components along East Mall are presented in **Appendix B**.

Component	Description	
Pipeline Length: 920m	 450mm Diameter PVC piping 1.5m below ground level Flows only by gravity with a minimum velocity of 0.6m/s when flowing full to half full Minimum slope of 0.2% 750 mm horizontal clearance with sanitary sewer 	
Manhole	Maximum spacing of 100mLocated at every bend in the pipeline	
Catch Basin/overflow structure	 Services a maximum area of 500m^{2 to} Minimum slope of 1% catch basin leads 0.5m pipeline offset from bottom of catch basin to catch debris and mitigate clogging in pipeline At rain gardens: An overflow structure which conveys extreme rainfall volumes to the stormwater system elimin the need for a regular catch basin 	

Table 3.6: Summary of Pipeline Components

3.8 Stormwater Model

Our proposed rain garden was modelled to verify that our design meets the stormwater criteria set in **Section 3.2**. All stormwater modelling was completed in PCSWMM Professional 2D because of its capabilities in analyzing complex conditions which considers rainfall, soil parameters, catchment characteristics, and pipe systems. Further breakdown of the stormwater model including elevation graphs of pipeline, layout of East Mall, detailed rainfall distributions, runoff and infiltration rates for different models/scenarios are included in **Appendix D**.

3.7.1 Design Model Input and Parameters

A summary of the model input and parameters are listed below. A more detailed breakdown of

all parameters are included in **Appendix D**:

- The topsoil at UBC was assumed to be loam with the soil characteristics outlined in the SWMM 5.1 Manual.
- The rain garden's soil was assumed to be sandy loam with dense vegetation growth

- The maximum overland flow distance for each sub catchment was assumed to be half the ROW.
- Fixed evapotranspiration potential of 1.89mm/day was used for the 24 hour rainfall events.
- Snowfall effects were negligible and assumed to have no effect on the model (Snow catch factor of 1).
- Horton's infiltration method was used to analyze the absorbent landscape
- Model used 5 subcatchments: West 16th Ave to Stadium Road, Stadium Road to Eagle Drive, Thunderbird Boulevard Intersection, and Eagle Drive to Thunderbird Boulevard, and Thunderbird Boulevard to Agronomy Road.

3.7.2 PCSWMM Results

All design targets identified in **Section 3.2** were achieved based on guidelines mentioned in **Section 3.1** and our PC SWMM model. A detailed breakdown of the results are shown in **Appendix D**.

4.0 PEDESTRIAN WALKWAY

4.1 Design Standards and Criteria

The design criteria such as codes and standards followed are discussed for each of the components below.

Steel Members Sizing: Wind load, snow load, and earthquake loads have been calculated according to the NBCC 2015 to ensure gravity load and lateral stability. Dead load was obtained by computing the member's self weight referencing the steel sections catalogue. The calculated load demands were then inputted into SAP2000 structural analysis software to determine the internal load demand taken by each member. The capacities of each member were determined according to the CSA S16-2019 Design of Steel Structures. The design was verified by ensuring the demand is less than the capacity using ultimate limit state design.

Second Order Analysis: Beam-column action and the P-delta effect was further analyzed due to bending moment and axial force acting simultaneous on the columns. The three limit states: cross sectional strength, overall member strength, and lateral-torsional buckling strength were computed according to CSA S16-19 to ensure capacity is greater than the demand.

Connection Strength: Bolts and weld connection capacities were determined using CSA S16-19 and compared with the load demands calculated previously to ensure the structure would not undergo connection failure.

Footing Stability: Reinforced concrete footing capacity was calculated according to CSA A23.3 Design of Concrete Structures. Reinforcement, anchors, and lateral ties configurations were

designed to standard. The capacity was compared to the load demand calculated previously to ensure it's sufficient.

4.2 Site Location

The pedestrian covered walkway consists of a single row of columns supporting a cantilever canopy. It is planned to be installed on Agronomy Road between East Mall and Health Sciences Mall. The driveway separates the canopy into two sections to allow vehicles to pass through. Each section spans 36 m and 32 m, respectively. The width of the canopy is 2.5 m, covering the entire sidewalk width to provide pedestrian weather protection. The plan view of the walkway is illustrated in **Figure 4.1**.

Figure 4.1: Plan View of Pedestrian Walkway

4.3 Key Component Description

A description of key walkway components is provided in Table 4.1. The full drawing set for the

walkway is attached in Appendix B which illustrates all these design components in detail. A

rendering of the walkway is provided in Figure 4.2.

Design	Description
Component	
Main Steel Structure	 3.5m tall round HS 219x9.5 columns spaced @ 4m Tapered cantilever beam HS 178x127x9.5 extends 2.5m horizontally 2 HS 102x51x9.5 structural beams spans 4m along the entire walkway Joists HS 76x51x3.2 spaced @ 570mm with slot to insert glass panel HSS Light beam (non load carrying) supported by columns allowing space for electrical wires
Footing	 400 mm deep 1200x1200 footing with 7-15M bars top and bottom 75 concrete cover 150 deep 350x350 concrete pedestal with 10M vertical and lateral ties 320x320 base plate welded to column
Connections	 Structural beam to cantilever beam connection: Two L51x51x6.4 angles with bolts Column to cantilever connection: 8mm thick custom HSS sleeve (male) slot in cantilever inner wall with four 16mm diameter blind bolts Column to cantilever connection: Weld gusset plate to cantilever and bolted to column Beam splice connection: custom slot joint with 16mm diameter bolts
Glass Panels	 14mm thick tempered laminated glass panel Sloped at 11 degrees with gap at the end to avoid water accumulation
Fabrication	 Blind bolt and sleeve connections are implemented to increase ease of installation Fillet and bevel welds could be completed in the shop to reduce field fabrication All connections are designed so that only bolting is required on-site to accelerate the construction schedule

Table 4.1: Key Walkway Component Description

Figure 4.2: Rendering of the Pedestrian Walkway

4.4 Structural Analysis and Design Checks

UBC

Various design checks were carried out for each component to ensure structural failure does not occur. The governing capacity and Demand/Capacity ratios (D/C) using factored loads and capacities are outlined in **Table 4.2**. Detailed calculations and design checks can be found **Appendix E**.

Components	Demand	Capacity	D/C	Comments
Cantilever Beam	287 MPa (conservative approach)	315 MPa	91%	Governed by bending stress
Structural Beam	288 MPa (conservative approach)	315 MPa	92%	Governed by bending stress
Column	227.7 MPa	315 MPa	72%	Governed by bending stress
P-Delta Analysis	N/A	N/A Limit State 2 and 3 governs	54%	Limit State 2 and 3 has equal values
Structural Beam-Cantilever Angle Connection	2.5 kN	70 kN	3.6%	Bolt Shear Capacity governs. This connection is provided for lateral stability

 Table 4.2: Demand and Capacity Summary

				only
Beam Splice Connection	12 kN (Shear)	82 kN (Shear)	15%	Bolt bearing stress governs. No Axial force is expected.
Column-Cantilever Bolt Connection	205 kN	296 kN	69%	Shear resistance of column determining
Column-Cantilever Weld Connection	205 kN (Orient 1) 150 kN (Orient 2)	622 kN (kN) 492 kN (kN)	65%	Multi-orientation force on weld. Combined D/C taken.
Footing	57.5 kN	500 kPa (assumed soil bearing capacity)	11.5%	The design is governed by reinforcement development length
Base Plate	57.5 kN	690 kN	8.3%	The base plate size is governed by the column section size

4.5 **Construction Specifications**

Full detailed technical specification regarding fabrication, materials, and welded construction can be found in **Appendix B**.

4.6 Special Fabrication Requirements

Note that while most walkway components consist of readily available sections and components, certain components of the walkway require specialized steel fabrication which will require early discussion on the contractor's end. This includes:

- Tapered cantilever beams composing custom HSS sections as shown in Figure 4.3
- Sleeve connections for the cantilever and beams (see Figure 4.4). While the outer female sleeves consist of readily available sections, to allow for a flush sleeve connection, the inner male sleeves must be custom fabricated as no standard section is readily available.

Figure 4.4: Beam Sleeve Connection

5.0 PROJECT MANAGEMENT

5.1 Site Plan and Anticipated Issues

5.1.1 East Mall Construction

East Mall is a collector road which services over 7000 veh/day and numerous pedestrians, cyclists, and buses during the pre-Covid school years. To minimize traffic disruptions, a phased construction process which maintains two way traffic at all times is expected to be feasible. The East Mall roadway design can be split into three sub-phases (see **Figure 5.1**):

- Phase A1 W16th Avenue to Stadium Road
- Phase A2 Stadium Road to Eagles Drive
- Phase A3 Eagles Drive to Thunderbird Boulevard

To maintain continuous two-way traffic, each sub-phase can be further split into two subphases for west side construction and east side construction. As shown in **Figure 5.2**, parking and bike lanes can be temporarily converted to through lanes and be demarcated through tubular markers. Upon the completion of construction on one side, the opposite side may be constructed, with two-way traffic being diverted to the finished side. Additional construction issues as well as mitigation measures are summarized in **Table 5.1**.

Figure 5.1: East Mall Phasing

Figure 5.2: Sample SIte Layout - Phase A.2.2 East Side Construction

Table 5.1: East Mall Construction Issues and Mitigation Issues				
Issues	Mitigation Measures			
Full and Partial Road Closures	 No full road closures expected to be necessary along East Mall If the contractor chooses a staging option that requires full road closures, it should be done between May and August 2021 (UBC's online summer term) to minimize traffic disruptions. Appropriate detour routes to be identified by contractor. 			
Maintaining 2-Way Traffic Operations	 2 way traffic can be maintained by temporarily converting existing parking and bike lanes to vehicle lanes with markers Some temporary curb changes required in Phase A.1 			
Business, Institutional, Residential Accesses (Phase A.2, A.3)	 Traffic control person to facilitate site access when construction conflicts with accesses Some temporary curb changes required in Phase A.1 Public information plan to account for stakeholders 			
Trench Excavations for Installation of pipes	 OHS regulations to be followed for trench excavation and shoring 			
Pipe and Soil Uncertainties	 Borehole excavation prior to construction to verify utilities and soil structure 			
Staging Requirements	 Sufficient ROW for on-road staging while maintaining traffic Storage available south of Stadium Road (see Figure 5.1) 			

Parking expected to be sufficient even with stall closures

Traffic control plan to account for cyclist rerouting and signage

Parking Closure

UBC

Bike Lane Closure

•

•

5.1.2 Pedestrian Walkway Construction

UBC

The covered walkway is to be constructed along the north side of Agronomy Road between

East Mall and Health Science Lane. Key construction considerations are discussed in Table 5.2

and proposed walkway staging is shown in Figure 5.3.

Issues	Mitigation Measures
Construction interference with pedestrian, traffic, and building operations	 Construction recommended from May to August 2021 during UBC online summer term to minimize distributions. Public information and traffic control plan
Sidewalk Closures and Pedestrian Safety	 The construction zone along Agronomy Road should be closed and fenced off from pedestrians
Lane Closures	 Single lane alternating traffic may be necessary along Agronomy Road using traffic control persons
Gerald McGavin and Donald Rix buildings awning removal and entrance closure	 Early notification and discussion with building managers Early building permitting and approval Information plan for alternative building access
Material deliver, staging and storage	 Proposed staging yard in parking lot by Technology Enterprise Building (See Figure 5.3) Early notification and discussion with the building manager and arrangements for alternative parking and access locations.
Custom fabricated components	• Early discussion with fabricators on feasibility, timeline, and delivery (See Section 4.6 for specific components to be considered)

Table 5.2: Walkway Construction Issues and Mitigation Issues

Figure 5.3: Phase B - Covered Walkway Staging

5.1.3 Traffic Management Plan

The contractor is to develop a traffic management plan for the East Mall construction and walkway construction along Agronomy Road per the BC MoTI's *Traffic Manual for Work on Roadways* 2020. The plan is to include a traffic control plan, incident management plan, public information plan, and implementation plan which addresses all issues mentioned in **Section 5.1**. The final phasing and construction sequence is to be verified by the contractor.

5.2 Cost Estimate and Quantity Take-Off

5.2.1 Capital Costs

A Class A cost estimate was developed for the detailed design and serves as an approximate expected bid cost. The project is expected to cost \$3,578,000 in 2021 CAD and is broken down in **Table 5.3** and is shown in greater detail in **Appendix F**. Quantities used in the cost-estimate were estimated from the final design drawings and are shown in **Appendix F**. The cost estimate covers construction capital costs following bid acceptance up until construction completion. This value includes an additional 10% contingency cost to represent unaccounted for items and variations in bid prices as well as a 8% fee for construction management. An additional 5% of costs was added for bonding and insurance costs. The cost estimate was based on historical item bid costs from sources including:

- Alberta Transportation Department Unit Prices, 2016
- BC MoTI Construction and Rehabilitation Cost Guide November 2013
- RS Means
- UNC Highway Safety Research Center Costs for Pedestrian and Bicyclist Infrastructure Improvements (Bushell et al, 2013)

 Cost Analysis of Bicycle Facilities: Cases from cities in the Portland, OR region (Weigand et al, 2013)

All costs were scaled to 2021 CAD using the *BC Highway Construction Cost Indexes* which are indexes developed by the BC Ministry of Transportation to adjust historical bid costs to the current year. Additionally, adjustments were made for sources outside of BC to Vancouver costs by comparing local taxes and currency values.

Item	Cost (2021 CAD)
Site Clearing	\$115,000
Roadwork	\$1,142,000
Bike Lane Along Corridor + SIdewalk Re-construction	
(~20% of Corridor)	\$484,000
Traffic Installations (Road Markings, Signage, Crossings)	\$89,000
Walkway (Agronomy Road)	\$371,000
Stormwater (GSI, Utilities, Landscaping)	\$665,000
Management Fee + Permitting (8% + 0.5%)	\$244,000
Bonding and Insurance (5%)	\$143,000
Contingency (10%)	\$325,000
Total	\$3,578,000

Tahlo	5 3.	Cost	Fstimate
Iane	5.5.	CUSI	Estimate

A variety of factors may affect the actual bid price. Major assumptions in the cost estimate as

well as the effects of potential scope of work changes are identified in Table 5.4.

UBC

	rabio of the otoriginal obot
Factor	Discussion
Asphalt Resurfacing	 The top 75mm asphalt layer replacement has been assumed for East Mall from W16 Ave to Thunderbird Blvd Should the client decide not to replace the asphalt from Stadium Road to Thunderbird Blvd, up to \$170,000 may be saved
Road Subgrade Installation	 Asphalt resurfacing without changes to existing subgrades assumed (except the new road area from W16th Ave to Stadium Rd) Should major subgrade concerns be discovered in testing, up to an additional \$530,000 may be required

Table 5.4: Potential Factors Affecting Final Cost

Stadium Neighbourhood	 The previously proposed road upgrades in preparation for the Stadium Neighbourhood Developments along East Mall from W16 Ave to Stadium Road have been included in the cost estimate.
Engineering	 The majority of engineering required has been assumed to be complete and was not directly considered. Additional engineering costs are only covered by the contingency and management fee.
Traffic Management	• Traffic management was assumed to be included in the historical bid costs in each item and was not considered separately. Specific measures (e.g. consultant fees for temporary timing plans, temporary curb removals, temporary road installations,etc), were not explicitly accounted for and are only captured in the contingency.

5.2.2 Life Cycle Costs and Present Worth

Operation and maintenance (O&M) costs for the roadway, stormwater, and walkway project annually as well as over 50-year life cycle were assessed and are shown in **Table 5.5**. There is an expected annual cost of approximately \$46,100 and an overall project present worth of \$6,186,000 2021 CAD over a 50-year life cycle. Only cost items shown in **Table 5.5** were considered, meaning costs that were not included were not considered in the estimate. It was found that most cost items (road and bike lane maintenance) are existing costs which also apply to a "Do-Nothing" option. Costs that are unique to the proposed design designated "New" in **Table 5.5** and costs that overlap with existing costs labelled "Existing". Factoring out existing O&M costs, the project is only expected to add \$8,500 annually or \$425,000 over a 50-year life cycle. The additional cost is primarily from the O&M costs of the new crosswalk RRFBs, Rain Garden, and Walkway. For further discussion on service life and maintenance, see **Section 5.4**.

Table 5.5: Life Cycle Costs				
ltem	Frequency	New or Existing	Cost	
	East Mall	•		
Road Rehabilitation	37 Years	Existing	\$303,000	
Road O&M	Annually	Existing	\$22,000	
Bike Lane O&M	Annually	Existing	\$1,900	
Sidewalk O&M	Annually	Existing	\$2,300	
RRFB O&M	Annually	New	\$600	
Traffic Signal O&M	Annually	Existing	\$5,700	
Lighting O&M	Annually	Existing	\$5,700	
Rain Garden O&M	Annually	New	\$1,400	
Sub-Total (Annual Cos		\$39,600		
Agron	omy Road Covered	l Walkway		
Walkway Lighting O&M	Annually	New	\$1,600.00	
Walkway Maintenance O&M	Annually	New	\$4,900.00	
Sub-Total	Sub-Total			
	Overall			
Annual Total		\$46,100		
50-Year Cost (Present Worth)			\$2,608,000	
Capital Costs (From Table 5.3)		\$3,578,000		
Total Present Worth (50-Year Cost		\$6,186,000		

5.3 Schedule

The schedule was developed by using a critical path analysis (CPA) algorithm that used a list of 40 tasks, their sequencings, and expected durations to determine the earliest a task may start and finish, thereby allowing us to calculate float times for tasks that are not on the critical path. A monte carlo simulation was superimposed atop the CPA algorithm to account for variation in productivity rates under the assumption that task durations follow triangular distributions. The final stage of the project is expected to begin May 2nd 2021 and last until February 1st 2021 with an expected duration of 186 work days excluding weekends and holidays. The high level schedule may be seen in **Figure 5.4** in which each repeating "A" subphase consists of roadway

demolitions, utility relocations, stormwater system installs, pavement overlays, and curb repairs. Phase B refers to the walkway and consists of demolitions, footing installation, and installation of prefabricated components. The detailed schedule breakdown, critical path analysis, and expected task completions may be seen in **Appendix G**.

Figure 5.4: Schedule

5.4 Service-life and Maintenance Plan

5.4.1 Roadway

The service life and maintenance plan for the roadway were conducted in two steps: (1) determining the optimal asphalt thickness, and maintenance trigger value for the lowest global warming potential and costs over a 50 year period, and (2) back calculating the years to first service based on the optimal maintenance trigger value determined in step 1.

Step 1: In order to determine the optimal maintenance trigger value, the ideal asphalt thickness was first discovered, since the thickness of the asphalt affects not only the deterioration rate, but

the use phase and end of life global warming potential as well. The software package "Pave-Save" (Shani et al. 2021) was used with a set of 26 general inputs and 7 inputs for each pavement design being considered to conduct a probabilistic LCA in order to determine the efficient frontiers for various designs as a function of IRI trigger values for maintenance (**Figure 5.5**). The model quantified the global warming potential through the embodied impacts, pavement-vehicle interactions, albedo, and work-zone congestion and cost impacts through the consideration of current construction and rehabilitation costs, a price index, and salvage values. A full list of the inputs used for the LCA model may be found in **Appendix H.**

Figure 5.5: Design Pareto Frontiers

We found that a thickness of 2.756in (green dots) gave us the lowest GWP and Cost at every IRI trigger value. Since costs decline monotonically the less often maintenance is conducted, costs are minimized by minimizing maintenance frequency. However, as maintenance is carried out less often, the increase from road roughness leads to an increase in GHG due to the increasing use phase impacts (**Figure 5.6**). Maintaining too often on the other hand, leads to

large emissions from construction, in addition to higher costs. Therefore, the minimum GWP was attained at an IRI trigger value between 3.16-3.56m/km. Given that this is a local, low volume road, the results are intuitive, as the main driver of GWP is from construction rather than the use phase. Therefore maintaining every time the road hits an IRI value of between 3.16-3.56m/km will result in the lowest global warming potential. However, should the client choose, they can postpone maintenance to lower the life cycle costs, but potentially at the expense of increasing GWP.

Figure 5.6: Cost and GWP for Best Design

Step 2: The maintenance schedule was calculated based on the assumption that an IRI value of 3.16, 3.36, or 3.56 m/km is chosen as the maintenance trigger. The time to first maintenance is estimated by computing the cumulative density function from the output of 1000 simulations of pavement degradation according to **Equation 1**. The equation describes deterioration as a function of pavement age, aadtt, and structural number at each time step for hot mix asphalts. The model is assumed to follow a difference stationary process a.k.a random walk with drift according to the following specification (Swei et al. 2018) :

$$\Delta D_{i,t} = \alpha A g e_{i,t-1}^{\beta_1} A A D T T_{i,t-1}^{\beta_2} S N_{i,t-1}^{\beta_3} + \varepsilon_{i,t}$$
 [Equation 1]

where
$$\alpha = 0.08$$
, $\beta_1 = ln(Age)$, $\beta_2 = ln(AADTT)$, $\beta_3 = -2.5$, $\epsilon \sim N(0, 2.59 \times 10^{-3})$

An output of the deterioration processes with an IRI Trigger Value of 3.56m/km is presented in **Figure 5.7** below using the Age, AADTT, SN, and AADTT growth rates for our East Mall design. A Red Line indicates a simulation which underwent at least one repair, and gray lines indicated no repairs. In **Figure 5.7** each simulation required a repair, indicated by the sharp drop in IRI, and therefore every line is red. Figures for comparisons to lower and higher trigger values are presented in **Appendix H**.

*Equation 1. is the same model that underlies Pave-Save's deterioration module, however it is run independently from the LCA software in order to derive more granular insights into the service life of this road. Figure 5.7: 1000 Deterioration Simulations for Selected Design (SN 2.76)

The time to first maintenance for a range of trigger values is then back calculated to

Figure 5.8: Cumulative Probability of First Maintenance

IRI Trigger Value(m/km)	Years to First Maintenance*	Average Number of Maintenance over 50 Years	
3.16	35	1.06	
3.36	37	1.01	
3.56	39	1.00	

Table	5 6·	Predicted	Maintenance	Schedule
Iabic	5.0.	rieuicieu	mannenance	Scheuule

*Rounded to nearest year

Our results suggest that with any of the three IRI trigger values, only one maintenance will be needed throughout the 50 year lifetime of the roadway. The choice to maintain at 3.16, 3.36, or 3.56 trade off costs and GWP, but all three remain on the Pareto efficient frontier. Therefore it is at the operator's discretion to select a maintenance value according to GWP or cost preferences. By comparison, our estimates of time to first maintenance align well with

Infrastructure Canada estimates of average expected life of new publicly owned roads suggests the expected useful life of this road will be approximately 34 years (Statistics Canada. (n.d.))

5.4.2 Rain Garden

The rain garden is designed to be low maintenance by using a combination of resilient, low or no deciduous trees to prevent leaves from clogging the drainage mechanisms. The rain gardens exact maintenance plan will be provided by the manufacturer of the rain garden bed. Below is a table of typical maintenance activities and frequencies collected from three manufacturers specifications. Table 5.7 contains our tabulation of common maintenance schedules according to guidelines published by two engineering consultancies (Kerr Wood Leidal Consulting Engineers. (n.d.), Blue Water Baltimore (n.d)).

Table 5.7: Rain Garden Typical Maintenance			
Maintenance Activity	Frequency		
Water to promote plants during dry periods	As needed		
Replace eroded vegetation			
Prune and weed swale	Monthly		
Remove trash and debris			
Remove accumulated sediment	Annually		
Replace sediment and mulch that has been eroded as needed			
Remove and replace mulch	2-3 Years		
Test planting bed for pH			

5.4.3 Walkway

The walkway, being built to design snow and rain loads for British Columbia with corrosion resistant material does not require a specific maintenance plan. Rather, the system should be inspected by building operations according to the shorter of either annually or along with building structural inspections.

6.0 CONCLUSION AND RECOMMENDATIONS

6.1 Summary

The East Mall redesign project is ready with Issue-For-Construction (IFC) drawings complete for the roadway, stormwater, and walkway designs aspects of the project including:

- Roadway construction consists of new elevated bike lanes, pavement markings, RRFB installations, curb extensions, and road resurfacing. Road narrowing is proposed along East Mall from W16-Avenue to Stadium Road to require new sub-base and asphalt.
- Proposed stormwater retention system includes 1789 m² of rain garden in the East Mall median and proposed green curb extensions and 9555 m² of absorbent landscape area.
- 3.5 m tall covered pedestrian walkway designed along Agronomy Road between East Mall and Health Science Mall with 2.5 m canopy width.

The project is expected to cost \$3,578,000 CAD in 2021 capital costs and a project present worth of \$6,186,000 2021 CAD for a 50-year service life. Construction is expected to begin on May 2nd, 2021 and last until February 1st 2022 with an expected duration of 186 work days.

6.2 Recommendations and Next Steps

The following recommendations have been made for project implementation:

- UBC SEEDS to tender project and awarding bid to suitable contractor
- Contractor to obtain / develop relevant permits, approvals, and traffic management plan
- For the rain garden construction, additional site soil conditions may be required and should be obtained by the contractor (E.g. through borehole drilling)
- Early consultation with fabricators and suppliers as well as relevant building managers is recommended for the walkway construction along Agronomy Road

7.0 REFERENCES

Blue Water Baltimore. (n.d.). *Routine Maintenance Activities for Rain Gardens*. Retrieved May 4, 2021 from

https://bluewaterbalto.wpengine.com//wp-content/uploads/BWBRainGardenRoutineMai ntenance.pdf

Bushell, Max A., Bryan W. Poole, Charles V. Zegeer, and Daniel A. Rodriguez. "Costs for Pedestrian and Bicyclist Infrastructure Improvements." *University of North Carolina Highway Safety Research Center, University of North Carolina, Chapel Hill* 45 (2013)

Johnson, D. L., & Miller, A. C. (1997). A spatially distributed hydrologic model utilizing raster data structures. *Computers & Geosciences*, *23*(3), 267–272.

https://doi.org/10.1016/S0098-3004(96)00084-2

Ministry of Transportation and Infrastructure. "Construction and Rehabilitation Cost Guide." Ministry of Transportation and Infrastructure, November 2013.

https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastruct

ure/contracting-with-the-province/documents/costguide-2013.pdf.

- Rain Gardens: Design, Implementation, and Maintenance Considerations. (n.d.). Kerr Wood Leidal Consulting Engineers. Retrieved March 7, 2021, from https://www.kwl.ca/wp-content/uploads/2019/07/8-1a.pdf
- Shani, P., Chau, S., & Swei, O. (2021). The economic cost (and savings) to reduce the global warming impact of transport infrastructure: A study of U.S. roadways. *Resources, Conservation & Recycling, In Press.*

- Statistics Canada. (n.d.). *Table 34-10-0072-01 Average expected useful life of new publicly owned road assets, Infrastructure Canada*. Retrieved April 10, 2021, from https://doi.org/10.25318/3410007201-eng
- Swei, O., Gregory, J., & Kirchain, R. (2018). Does pavement degradation follow a random walk with drift? Evidence from variance ratio tests for pavement roughness. *Journal of Infrastructure Systems*, 24(4), 04018027.

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000450

- University of British Columbia. Campus and Community Planning. (2015). *[University of British Columbia Point Grey Campus Digital Elevation Model (DEM), 2015]* (University of British Columbia. Campus and Community Planning, Ed.; V1 ed.). Abacus Data Network. <u>https://hdl.handle.net/11272.1/AB2/2FKBA6</u>
- Weigand, L., McNeil, N., Dill, J. (2013). Cost Analysis of Bicycle Facilities: Cases from cities in the Portland, OR region. Retrieved April 12, 2021, from

Dill Bicycle Facility Cost June2013.pdf (activelivingresearch.org)

Appendix A - Roadway Technical Design Criteria Table

Appendix A - Roadway Design Technical Criteria Table

Docing Element	Procent Conditions	MoTI / TAC Guidelines Criteria	Branasad Criteria	Composite Madar
1.0 - Roadway	Present contations	Motty IAC Guidelines Citteria	Proposed Citteria	Comments / Rotes
Functional Classification	Minor	Minor	Minor	
Design Classification	UCD	UCD	UCD	UCD = Urban-Collector-Divided.
Posted Speed	50 km/h	50 km/h	50 km/h	
Design Speed	50 km/h	50 km/h	50 km/h	
Basic # of Lanes Minimum Horizontal Radius	1 per Direction	1 per Direction	1 per Direction	Not including left-cutin bays of transition lanes.
Minimum K Factor (Sag V.C.)	Unknown	5-6	6	For urban designs. / K Factors to provide Stopping Sight Distance.
Minimum K Factor (Crest V.C.)	Unknown	7	7	K Factors to provide Stopping Sight Distance.
Maximum Grade	Unknown	6%	6%	Based on rolling topography.
Maximum Superlevation	Unknown	6%	2%	Typical maximum superelevation is 4%, but 6% is allowed.
Minimum Stopping Sight Distance	Unknown	65 m	65 m	For a design speed of 50 km/h
Minimum Intersection Sight Distance	Unknown	RFS/LFS: 95 m/105 m	RFS/LFS: 95 m/105 m	RFS = Right-turn From Stop / LFS = Left-turn From Stop.
Minimum Sight-Line Setback Distance	Unknown	4.4 m	4.4 m	Point from the major road edge to the driver's eyel line.
Minimum Curb Extension Radius	5 m	5-10 m 3-5 m	Existing 5 m	Circular curve used, wint value desired to ensure sounder trumming radius, reduced rumming speeds, and provide pedestran crossing comfort.
Minimum Curb Extension Offset Distance	22 m	15-22 m	25m	Linkance may be perfected for anomatowe property and the edges of the Calo.
Through Lane Width	3.5 m	3.0-3.7 m	3.3-3.5 m	Minimum through lane width = 3.3 m for roads servicing bus / larger trucks.
Right-Turn Lane Width	3.5-4.0 m	3.0-3.7 m	3.3-3.5 m	Can be reduced by 0.2-0.25 m from the through lane dim. / Upper limit = 4.0 m.
Left-Turn Lane Width	3.2-3.5 m	3.0-3.7 m	3.6 m	Can be reduced by 0.2-0.25 m from the through lane dim. / Upper limit = 4.0 m.
Parking Lane Width	2.4 m	2.4 m	2.5 m	Can be increased to accomodate for larger vehicles.
Median Width	9 m	1-35 m	9 m	
Concrete Buffer Width	N/A 6221	0.3-1.0 m	U.6-1 M	Minimum concrete outrer width = 0.6 m it parking lane adjacent to dike lane to accomodate for door openings.
Level of Service (to Year 2040)	6231 C or better	C or better	C or better	Based on Intersection LOS from Sunchro assuming 0.6% growth rate to year 2010
Design Vehicle	WB-20	WB-20	WB-20	Based on readway classification and courts.
2.0 - Bike Lane				
2.1 - General				
Design Speed	Unknown	20-30 km/h	30 km/h (NB) and 35 km/h (SB)	
Actual Road Grade	2%/-2%	2%/-2%	2%/-2%	
Stopping Sight Distance (SSD)	Unknown	34 m (30 km/h) / 36 m (35 km/h)	34 m (NB) / 36 m (SB)	Depends on speed and grade
Minimum Horizontal Clearance from Obstruction	Unknown	0.2 m	0.2 m	0.2 m to obstruction between 100mm and 650mm high and 0.5 m to obstruction greater than 750 mm high
Minimum Vertical Clearance	Unknown	3.6m	N/A	
Mininum Raised Median Width	Linknown	2.5 m min. psg toading zone	2.5 m	Parking stops should be spaced with longitudinal gaps of 2.0 m, or less
2.2. Horizontel Alignment	OIKIOWI	0.0 m	0.0-0.911	r anxing stops should be speced with rungitudinial gaps of 2.0 m of ress
Basic # of Lanes	1	1	1 per direction	1
Minimum Horizontal Radius	Unknown	24 m	24 m	A function of bicycle speed, superelevation, and coeficient of friction
Lateral Clearance on Vertical Curve	Unknown	5.9 m / 6.6 m	5.9 m / 6.6 m	Depends on stopping sight distance (34m / 36m) and horizontal radius (24m). Linear interpolation applied to Table 5.5.3 values.
Minimum Bike Lane Width	1.5 m	1.8 m	2.2 m	Desired width = 2.0 m for uni-directional bike lanes with <150 bikes/hr - available counts at Thunderbird Blvd shows <40 bikes/hr
2.3 - Vertical Alignment				
Recommended Minimum Longitudinal Gradient (Grade)	N/A	0.6%	N/A	Not a hard requirement, for drainage only. Can be reduced to 0% if thjere is adequat cross-slope and lateral slope
Minimum Crest Curve Length	Unknown	at least min SSD	34 m / 36 m	
Minimum Sag Curve (K)	~	2.3/3.1	4	Depends on design speed. K = (V ^{*2})/390.
Cross close	76 N/A	76 291, 491	2%	
3.0 - Roadside (Eurnishing + Pedestrian Through Zones)	INA	2.70~4.70	570	1
Minimum Pedestrian Through Zone Width	1.8 m	1.5 m for 2 people and 2.25 m for 3	2.35 m	1
Minimum Furnishing Zone Width	2 m	1.5 m	1.75 m	1.2 m is the absolute minimum for small/mid trees and 1.5 mn is required for larger trees
4.0 - Pavement				
4.1 - Vehicle and Parking Lane				
Minimum Pavement Thickness	Unknown	50mm AC Surface Course 90mm AC Lower Course 150mm Granular Base 300mm Granular Subbase	Not Used	For Higher Zoned Collector / Residential Streets
		50 - 75 mm AP 225 mm of 25mm CBC 300 mm min. of SGSB on Fine Grained Soil	75 mm AP 225 mm of 25mm CBC 300 mm min. of SGSB on Fine Grained Soil	Typical Pavement Structure Type C: Low Volume & Subdivision Roads; 20 yr Design ESAL < 100,000
Standard Asphaltic Concrete Mixes and Corresponding	Linknown	SP 12.5; PG 64-28	SP 12.5; PG 64-28	Surface course mic for resurfacing and reconstruction work on local and collector roads; traffic category B (0.3-3 millions ESAL)
Asphalt Cement (Surface Course)		SP 19.0; PG 58-28	Not Used	Binder course mix for all non-roadway areas including interim repair and utility cut repair work
4.2 - Protected Bike Lane	UNKIOWN	40-30 mm	WITHING 40 mm	Loniese conse wix typicer conject layer michines ion coperpare i.c. i type mich, iower value is tor infer graded mixes and the upper minimum value is top: coarses graded mixes
Minimum Pavement Thickness	Unknown	50mm MMCD Upper Course #2/9.5mm 150mm Granular Base	50mm MMCD Upper Course #2/9.5mm 150mm Granular Base	
4.3 - Sidewalk				
Minimum Pavement Thickness	Unknown	100 mm Concrete	100 mm Concrete	
5.0 - Intersection Design				
Intersection Angle	Linknown	70-110 degrees	70-110 degrees	
Tangent Length	Unknown	20 m	20 m	
Maximum Deflection Angle across Intersection	Unknown	3° to 5°	3° to 5°	
5.2 - Intersection Vertical Alignment		•		
Minimum Cross Slope of Both Roadways	Unknown	0.5 %	0.5 %	
Change in Rate of Superelvation	Unknown	0.020 /m/10m length	0.020 /m/10m length	For a design speed of 50 km/h
Maximum grade change in intersection	Unknown	3-4%	3-4%	
Minimum grade along curb returns	Unknown	0.5 %	0.5 %	
Grade at vehicle stops	Unknown	0.5 % - 3%	0.5 % - 3%	1
5.3 - Tapers and Auxillary Lanes	1 Junior	45.1		
RT Taper Kato (w/o Auxiliary Lane)	Unknown	15:1	15:1	For a design speed or 5u km/n Care a design speed or 5u km/n
RT Taper Length (W/o Auxiliary Lane)	Unknown	53 m	53 m	rur a design speed u ou nim anti lane widin = 3.5m Ear a design speed u ou nim anti lane widin = 3.5m
RT Taper Ratio Range (w/ Auxilliary Lane)	Unknown	11:1 - 17:1	500 m 11:1 - 17:1	Provide design speed or so minin
RT Parallel Lane Lenoth (w/Auxilliary Lane)	Unknown	35-75 m	35-75 m	For a design speed of 50 km/h
RT Taper Reverse Curve Radius(w/ Auxilliary Lane)	Unknown	90-150 m	90-150 m	For a design speed of 50 km/h
LT Lanes Minimum Storage Length	Unknown	15 m	15 m	
LT Lane Transition Horizontal Radius	Unknown	500 m	500 m	For a design speed of 50 km/h
LT Taper Ratio Range	Unknown	8:1 - 30:1	8:1 - 30:1	For a design speed of 50 km/h
LT Bay Taper Ratio (Transition into Median)	Unknown	10:1	10:1	For a design speed of 50 km/h
LT Bay Taper Radius for Symmetrical Reverse Curve	Unknown	90-150 m	90-150 m	For a design speed of 50 km/h

Appendix B - Detailed Design Drawings

PROJECT NO. 00000-00001

EAST MALL REDESIGN (W16TH AVE TO AGRONOMY ROAD)

UBCV SOUTH CAMPUS

ISSUED FOR CONSTRUCTION APRIL 14, 2021

(FOR CIVL 446 EDUCATIONAL PURPOSES ONLY)

REV	DATE
A	MAR 5, 2021
В	APR 14, 2021

ΡΩΟΝΟΕΕΣ ΒΥ ΑΝ Αυτοσεςκ στυσεντ νεκοιον

PRODUCED BY AN AUTODESK STUDENT VERSION

RODUCED BΥ PZ AUTODESK STUDENT < E RS ō

Ž

LB

PRODUCED BY AN AUTODESK STUDENT VERSION

RODUCED BY AN AUTODESK STUDENT VERSION

NOTES:

- 1. FOR ROADWAY PLAN, SEE DWG. D-445-446-101 TO 105 FOR DETAILS.
- 2. FOR ROADWAY CROSS SECTION, SEE DWG. D-445-446-301 TO 304 FOR DETAILS.
- FOR GREEN STORM WATER INFRASTRUCTURE (GSI), SEE DWG. D-401 TO 403 FOR DETAILS. 3.
- FOR PEDESTRIAN COVERED WALKWAY, SEE DWG. D-501 TO 503 FOR DETAILS. 4.
- 5. FOR STANDARD DETAIL DRAWINGS:
- STREET LIGHTS SEE SURREY MMCD DWG. SSD-R.E.1 TO R.E.4 (PROPOSED STREET LIGHTS TO BE PLACED ON THE EAST SIDE OF EAST MALL 5.1. FROM W16TH AVE TO STADIUM ROAD AT 45 m INTERVAL AND 0.5 m FROM THE ABSORBENT LANDSCAPE EDGE NEAREST TO ROADWAY). RECTANGULAR FLASHING BEACON - SEE SURREY MMCD DWG. CCSD-14d. 5.2.
- CURBS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. C4.1 AND C19.1 5.3.
- 5.4. SIDEWALK LETDOWN - SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R4.1, R4.2, AND R7.1.
- SIGN POSTS + SIGNS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R8.1 TO 8.16 AND C19.2 TO 19.3. 5.5.
- PARKING METER LAYOUT SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R9.1 5.6.

UWU ENGI 101 OwO St UWU Vancouver, I TEL: 778-88 WEB: www.u H 1:1000 SCALE V 1:100 REVISIONS DATE ion for Design Summary Repor A 21/03/05 B 21/04/14 Submission for Final Design Repor

ΡΩΟΝΟΕΕΣ ΒΥ ΑΝ Αυτορεσκ στυρεντ νεκοιον

EERING LTE reet - Suite 10 C V1O 0W0 8-8888 wu.ca	D. 0,				UI SUSTAINA MUNICIP SOUT	BC SE BILIT AL EN HERN	EEDS TY P GINE CAM	S ROGRAM ERING PUS		
200PR CIVL-445-4	446 - EAST MALL 2021-04-14 SIGNATURE			W16	PROFIL EAST MA 6TH AVE TO AGI	LE LL RONO	MY R	D		
		SENIOR DESIG	NER 04-14			QUAL	DESI ITY CON ASSUR DF	GNED <u>C.Q.</u> ITROL <u>B.O.</u> ANCE <u>B.O.</u> RAWN <u>C.Q.</u>	DATE 20 DATE 20 DATE 20 DATE 20	021-04-14 021-04-14 021-04-14 021-04-14
			LE NUMBER 0-0001		PROJECT NUMBER		REG R	DRAWING NU D-445-44	JMBER 6-201	REV B

L1100-LINE PROFILE (STADIUM RD TO EAGLES DR)

- 5. STREET LIGHTS - SEE SURREY MMCD DWG. SSD-R.E.1 TO R.E.4 (PROPOSED STREET LIGHTS TO BE PLACED ON THE EAST SIDE OF EAST MALL 5.1. FROM W16TH AVE TO STADIUM ROAD AT 45 m INTERVAL AND 0.5 m FROM THE ABSORBENT LANDSCAPE EDGE NEAREST TO ROADWAY). RECTANGULAR FLASHING BEACON - SEE SURREY MMCD DWG. CCSD-14d. 5.2.
- CURBS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. C4.1 AND C19.1 5.3.
- 5.4. SIDEWALK LETDOWN - SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R4.1, R4.2, AND R7.1.
- SIGN POSTS + SIGNS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R8.1 TO 8.16 AND C19.2 TO 19.3. 5.5.
- PARKING METER LAYOUT SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R9.1 5.6.

NOTES:

3.

4.

IEERING LTD. reet - Suite 10, 3C V1O 0W0 8-8888 uwu.ca		UI SUSTAINA MUNICIP SOUT	BC SEI BILIT AL ENG HERN C	eds Y P Sine	S ROGRAM ERING PUS
200PR CIVL-445-446 - EAST MALL 2021-04-14 SIGNATURE		PROFIL EAST MA W16TH AVE TO AGI	LE LL RONOM	1Y R	D
	SENIOR DESIGNER DATE 2021-04-14		QUALIT QUALITY A	DESI Y CON ASSUR DF	SNED C.Q. DATE 2021-04-14 TROL B.O. DATE 2021-04-14 ANCE B.O. DATE 2021-04-14 ANCE C.Q. DATE 2021-04-14
	FILE NUMBER	PROJECT NUMBER		REG R	DRAWING NUMBER REV

L1100-LINE PROFILE (EAGLES DR TO THUNDERBIRD BLVD) PVI STA: 1100+346.00 PVI ELEV: 94.45 GRADE BREAK STA = 1100+444.13K:155.32 ELEV = 95.042LVC: 85.98 1100+303.01 BVCE: 93.95 96 388.94. EVCE: BVCS: EVCS: PVI STA: 1100+263.30 PVI ELEV: 93.48 K: 299.21 LVC: 74.88 96 <u>300.74</u> 93.92 0.61% VCE: Д 94 <u>_</u>Dê i Ξ 92 67 90 42 419 33 332 503 649 895 5.7 34 73 50 13 65 77 89 02 67 91 5 93. 93. 93. 93. 94. 94. 94. 94. 94. 94. 93. 93. 93. 93. 94. 94. 94. 94. 94. 94. 95. 95. M.

1100+240 1100+260 1100+280 1100+300 1100+320 1100+340 1100+360 1100+380 1100+400 1100+420 1100+440 1100+460

NOTES:

- 1. FOR ROADWAY PLAN, SEE DWG. D-445-446-101 TO 105 FOR DETAILS.
- 2. FOR ROADWAY CROSS SECTION, SEE DWG. D-445-446-301 TO 304 FOR DETAILS.
- 3. FOR GREEN STORM WATER INFRASTRUCTURE (GSI), SEE DWG. D-401 TO 403 FOR DETAILS.
- 4. FOR PEDESTRIAN COVERED WALKWAY, SEE DWG. D-501 TO 503 FOR DETAILS.
- 5. FOR STANDARD DETAIL DRAWINGS:
- STREET LIGHTS SEE SURREY MMCD DWG. SSD-R.E.1 TO R.E.4 (PROPOSED STREET LIGHTS TO BE PLACED ON THE EAST SIDE OF EAST MALL 5.1. FROM W16TH AVE TO STADIUM ROAD AT 45 m INTERVAL AND 0.5 m FROM THE ABSORBENT LANDSCAPE EDGE NEAREST TO ROADWAY). RECTANGULAR FLASHING BEACON - SEE SURREY MMCD DWG. CCSD-14d. 5.2.
- CURBS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. C4.1 AND C19.1 5.3.
- 5.4. SIDEWALK LETDOWN - SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R4.1, R4.2, AND R7.1.
- SIGN POSTS + SIGNS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R8.1 TO 8.16 AND C19.2 TO 19.3. 5.5.
- PARKING METER LAYOUT SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R9.1 5.6.

ΡΩΟΝΟΕΕΣ ΒΥ ΑΝ Αυτορεσκ στυρεντ νεκοιον

	96	5	
	94	-	
	92	>	
	90)	
		1	I

EERING LTD. eet - Suite 10, C V1O 0W0 3-8888 wu.ca		UBC SEEDS SUSTAINABILITY PROGRAM MUNICIPAL ENGINEERING SOUTHERN CAMPUS								
00PR CIVL-445-446 - EAST MAI 2021-04- SIGNATURE	4		PROFIL EAST MA W16TH AVE TO AGE	LE LL RONOI	MY R	D				
	SENIOR DESIGNER DATE 2021-04-14			QUAL QUALITY	DESI ITY CON ASSUR DF	GNED C.Q. DATE 2021-04-14 TROL B.O. DATE 2021-04-14 ANCE B.O. DATE 2021-04-14 RAWN C.Q. DATE 2021-04-14				
	FILE NUMBER		PROJECT NUMBER 00000-00001		REG R	DRAWING NUMBER REV				

L1200-LINE PROFILE (THUNDERBIRD BLVD TO EAGLES DR)

NOTES:

- 1. FOR ROADWAY PLAN, SEE DWG. D-445-446-101 TO 105 FOR DETAILS.
- 2. FOR ROADWAY CROSS SECTION, SEE DWG. D-445-446-301 TO 304 FOR DETAILS.
- 3. FOR GREEN STORM WATER INFRASTRUCTURE (GSI), SEE DWG. D-401 TO 403 FOR DETAILS.
- FOR PEDESTRIAN COVERED WALKWAY, SEE DWG. D-501 TO 503 FOR DETAILS. 4.
- 5. FOR STANDARD DETAIL DRAWINGS:
- STREET LIGHTS SEE SURREY MMCD DWG. SSD-R.E.1 TO R.E.4 (PROPOSED STREET LIGHTS TO BE PLACED ON THE EAST SIDE OF EAST MALL 5.1. FROM W16TH AVE TO STADIUM ROAD AT 45 m INTERVAL AND 0.5 m FROM THE ABSORBENT LANDSCAPE EDGE NEAREST TO ROADWAY) RECTANGULAR FLASHING BEACON - SEE SURREY MMCD DWG. CCSD-14d. 5.2.
- CURBS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. C4.1 AND C19.1 5.3.
- 5.4. SIDEWALK LETDOWN - SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R4.1, R4.2, AND R7.1.
- SIGN POSTS + SIGNS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R8.1 TO 8.16 AND C19.2 TO 19.3. 5.5.
- PARKING METER LAYOUT SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R9.1 5.6.

EERING LTD. eet - Suite 10, iC V1O 0W0 8-8888 www.ca	UBC	UI SUSTAINA MUNICIP SOUT	BC SE BILIT PAL EN HERN	CYP GINE	S ROGRAM ERING PUS	
200PR CIVL-445-446 - EAST MALL 2021-04-14 SIGNATURE						
		WIGHAVE TO AG			D	
			DESIGNED QUALITY CONTROL			<u>021-04-14</u> 021-04-14
	SENIOR DESIGNER		QUALITY	ASSUR	ANCE B.O. DATE 2	021-04-14
	DATE 2021-04-14			DI	RAWN <u>C.Q.</u> DATE <u>2</u>	021-04-14
	FILE NUMBER	PROJECT NUMBER		REG	DRAWING NUMBER	REV
	20-0001	00000-00001		R	D-445-446-204	В

L1200-LINE PROFILE (EAGLES DR TO STADIUM RD)

1200+200 1200+220 1200+240 1200+260 1200+280 1200+300 1200+320 1200+340 1200+360 1200+380 1200+400 1200+420 1200+440 1200+460

NOTES:

- FOR ROADWAY PLAN, SEE DWG. D-445-446-101 TO 105 FOR DETAILS.
 FOR ROADWAY CROSS SECTION, SEE DWG. D-445-446-301 TO 304 FOR DETAILS.
- 3. FOR GREEN STORM WATER INFRASTRUCTURE (GSI), SEE DWG. D-401 TO 403 FOR DETAILS.
- 4. FOR PEDESTRIAN COVERED WALKWAY, SEE DWG. D-501 TO 503 FOR DETAILS.
- 5. FOR STANDARD DETAIL DRAWINGS:
- STREET LIGHTS SEE SURREY MMCD DWG. SSD-R.E.1 TO R.E.4 (PROPOSED STREET LIGHTS TO BE PLACED ON THE EAST SIDE OF EAST MALL 5.1. FROM W16TH AVE TO STADIUM ROAD AT 45 m INTERVAL AND 0.5 m FROM THE ABSORBENT LANDSCAPE EDGE NEAREST TO ROADWAY). RECTANGULAR FLASHING BEACON - SEE SURREY MMCD DWG. CCSD-14d. 5.2.
- CURBS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. C4.1 AND C19.1 5.3.
- 5.4. SIDEWALK LETDOWN - SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R4.1, R4.2, AND R7.1.
- SIGN POSTS + SIGNS SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R8.1 TO 8.16 AND C19.2 TO 19.3. 5.5.
- PARKING METER LAYOUT SEE CITY OF VANCOUVER STANDARD DETAIL DWG. R9.1 5.6.

		-				UWU ENGINE
						101 OwO Stre
			UN	\mathbf{v}		Vancouver, BC
			<u> </u>			TEL: 778-888-
		_				WEB: www.uw
~~~		0	10	H 1:1000	50m	CAD FILENAME20
507	ALE	0	1	V 1:100	5m	DATE
REV	DA	TE			REVISIO	NS
A	21/0	3/05	Submis	sion for Design	Summary R	Report
в	21/0	4/14	Submis	sion for Final De	esign Repor	t

#### ΡΩΟΝΟΕΕΣ ΒΥ ΑΝ Αυτορεσκ στυρεντ νεκοιον

EERING LTD. eet - Suite 10, C V1O 0W0 3-8888 wu.ca			UBC	)	UI SUSTAINA MUNICIP SOUT	BC SI BILI AL EN HERN	EEDS FY P IGINE CAM	S ROGRAM ERING PUS		
00PR CIVL-445-446 - EAST MAL 2021-04-1 SIGNATURE	4			W16	PROFIL EAST MA 6TH AVE TO AGI	LE LL RONO	MY R	D		
						QUAL	DESI	GNED <u>C.Q.</u> TROL <u>B.O.</u>	DATE DATE	<u>21-04-14</u> 21-04-14
	SENIO	R DESIGNER				QUALITY	Y ASSUR	ANCE B.O.	DATE 20	21-04-14
	DATE	2021-04-14					DI	RAWN C.Q.	DATE 20	21-04-14
		FILE NUMBER			PROJECT NUMBER		REG	DRAWING NU	IMBER	REV
		20-0001			00000-00001		R	D-445-44	6-205	В



IEERING LTD. reet - Suite 10, 3C V1O 0W0 8-8888 uwu.ca		UI SUSTAINA MUNICIP SOUT	BC SE BILIT PAL EN HERN	EEDS TY P GINE CAM	S ROGRAM EERING PUS
300CS CIVI-445-446 - EAST MALL 2021-04-14 SIGNATURE		CROSS SE EAST MA W16TH AVE TO AGI	CTIO LL RONO	N MY R	D
	_			DESI	GNED <u>C.Q.</u> DATE <u>2021-04-14</u>
	_		QUAL	ITY CON	ITROL B.O. DATE 2021-04-14
	SENIOR DESIGNER		QUALITY	ASSUR	ANCE B.O. DATE 2021-04-14
	DATE 2021-04-14	DATE 2021-04-14			RAWN <u>C.Q.</u> DATE <u>2021-04-14</u>
	FILE NUMBER	PROJECT NUMBER		REG	DRAWING NUMBER REV
	20-0001	00000-00001		R	D-445-446-301 B

Τ





Τ



## EXISTING ASPHALT PAVEMENT

EERING eet - Suit C V1O 0 3-8888 wu.ca	<i>LTD.</i> e 10, W0			UBC	U SUSTAINA MUNICI SOU	BC SI BILI PAL EN THERN	EEDS FY P Igine Cam	S ROGRAM ERING PUS		
00CS CIVL	445-446 - EAST MALL 2021-04-14 SIGNATURE				CROSS SE EAST M. W16TH AVE TO AG	CTIO ALL GRONO	N MY R	D		
		SENIOF	DESIGNER 2021-04-14			QUAL	DESI .ITY CON Y ASSUR DI	GNED <u>C.Q.</u> ITROL <u>B.O.</u> ANCE <u>B.O.</u> RAWN <u>C.Q.</u>	DATE DATE DATE DATE	2021-04-14 2021-04-14 2021-04-14 2021-04-14
			FILE NUMBER		PROJECT NUMBER	 1	REG R	DRAWING NU D-445-44	^{імвек} 6-304	REV B



∄

292





UWU ENGINEERING 101 OwO Street - Suit Vancouver, BC V10 0 TEL: 778-888-8888 WEB: www.uwu.ca	<i>LTD.</i> le 10, W0	UBC	UI SUSTAINA MUNICIP SOUT	BC SE BILIT AL EN HERN	EEDS TY P GINE CAM	S ROGRAM ERING PUS	
CAD FILENAME	445-446 - EAST MALL 2021-04-11 SIGNATURE		WALKW EAST MA W16TH AVE TO AGI	AY LL RONOI	MY R	D	
		SENIOR DESIGNER DATE 2021-04-11 FILE NUMBER	PROJECT NUMBER	QUAL	DESI ITY CON ASSUR DF REG	SNED         M.L.         DATE           TROL         B.O.         DATE           ANCE         B.O.         DATE           RAWN         M.L.         DATE	2020-12-03 2021-04-11 2021-04-11 2021-03-11 REV
		20-0001	00000-00001		R	D-445-445-501	-



		FILE NUMBER	FROSECT NOMBER							
			PPO JECT NUMPER		REG	DRAWING NUMBER REV				
		DATE 2020-12-03			DI	RAWN <u>M.L.</u> DATE <u>2020-12-03</u>				
		SENIOR DESIGNER		QUALITY /	ASSUR	ANCE B.O. DATE2020-12-03				
				QUALIT	TY CON	ITROL B.O. DATE2020-12-03				
				DESIGNED DATE2020-12-03						
			WIGTH AVE TO AGRONOMY RD							
	SIGNATURE									
	2020-12-03		WALKWAY							
DOWW_CIVL-	445-446 - EAST MALL									
iwu.ca			SOUT	HERN	CAM	PUS				
8-8888			MUNICIF	PAL ENG	GINE	ERING				
C V10 0	W0		SUSTAINABILITY PROGRAM							
eet - Suit	LTD. e 10	U	BC U	BC SE	EDS	5				
EERING										

#### 1.0 Fabrication

Fabrication shall be performed in an enclosed area that is adequately heated. Prior to fabrication, the welders' and welding operators' qualifications, shop drawings, welding procedures, mill certificates, and welding consumable certificates shall be submitted for the Owner's review.

In advance of fabrication, the Owner will convene a prefabrication meeting with the Contractor, the Designer to review issues such as, quality control, welding procedures, mill certificates and heat numbers, splices, coatings, shop trial assembly, and schedule.

The Contractor shall provide a schedule of fabrication to the Owner in the form of a Gantt Chart updated on no less than a monthly basis.

#### 1.1 Shop Drawings

Shop drawings for the walkway shall be developed from a 3D model. The model shall include each element and assembled product. Before the geometry is finalized, as-built geometry and elevations of the structure shall be confirmed by the Contractor. Discrepancies shall be submitted to the Owner for review and accepted by the Engineer.

Shop drawings shall show all information and details needed for the fabrication including member shapes, dimensions, connection details, material, arraignment of member locations, faster details, weld details and symbols, and coating details.

#### 1.2 Bolt Holes

Clause 11.4.8 in Division II of AASHTO shall apply except that all bolt holes in load carrying segments of main members and any material welded to main members shall be drilled full size or subpunched and reamed to full size. All holes in member splices shall be circular and perpendicular to the member and shall be deburred to ensure a proper faying surface.

Standard holes for high strength bolts shall be of a diameter not more than 2 mm in excess of the nominal bolt diameter, except that the following bolt/hole combinations will be permitted:

- a) either 3/4 inch or M20 bolts in 22 mm holes;
- b) either 7/8 inch or M22 bolts in 24 mm holes;
- c) either 1 inch or M24 bolts in 27 mm holes;
- d) either 1-1/8 inch or M30 bolts in 32 mm holes.

Punched holes shall be clean cut, without torn or ragged edges. The diameter of the die shall not exceed the diameter of the punch by more than 2 mm. If a punched hole must be enlarged to admit a high strength bolt, it shall be reamed.

#### 1.3 Shop Trial Assembly

The structure shall be progressively assembled in accordance with the following requirements:

Before trial assembly starts, the Contractor shall submit to the Owner's representative for review by the Engineer a detailed plan showing the proposed trial assembly arrangement and procedures.

Field connections shall be pre-assembled prior to erection to verify the geometry of the completed structure. Holes for splices shall be drilled during trial assembly in the shop, or sub-drilled and then reamed to full size while assembled.

#### 1.4 Surface Finishes

All steel components shall be blast cleaned after fabrication. Shop painting shall conform with the BC MOTI Specifications, Painting.

#### 1.5 Fabrication Tolerances

Dimensions shown on the Plans are at a reference temperature of 0 °C. The Contractor shall make the necessary dimensional adjustments for actual temperatures at the time and place of fabrication. Normal tolerance for structural steel fabrication and fitting between hole groups will be  $\pm$  3 mm unless specified otherwise. Dimensional tolerances for structural members shall comply with the appropriate tolerances as specified in AWS D1.5, Section 3.5, and CAN/CSA-S6-00, Section 10.24.7

#### 2.0 Materials

#### 2.1 Welding Consumables

All electrodes shall match the base metal specified in accordance with CSA W59, Table 12.1. The deposited weld metal shall provide strength, ductility, impact toughness, and corrosion resistance equivalent to the base metal.

Welding consumables for all processes shall be certified by the Canadian Welding Bureau (CWB) as complying with the requirements of CSA W48.

#### 2.2 High Strength Bolts

Unless otherwise specified on the Plans, uncoated high strength bolts shall conform to the requirements of ASTM A490, Type 3 (or ASTM A490M Type 3 of equivalent size), weathering steel, with compatible nuts and hardened washers. All bolts and compatible washers and nuts shall be either metric or imperial.

Certified mill test reports for the fastener material shall be provided. The supplier shall provide a lot number appearing on the shipping package and a certification noting when and where all testing was done, including rotational capacity tests.

#### 2.3 Structural Steel

Structural material, either plain or fabricated, shall be stored above the ground in an upright and shored position upon platforms, skids, or other supports. It shall be kept free from dirt and other foreign matter, and shall be protected as far as practical from corrosion. Long members shall be supported on skids placed near enough together to prevent overstress from deflection.

3.0 Welded Construction

The quality and details of welds shall be in accordance with AWS D1.5.

Welding procedures shall be in accordance with the requirements of CSA W47.1 and this specification. Prequalified joint geometry and parameters shall be accepted as specified by CSA Standard W59-03.

Welding procedures shall be submitted for each type of weld used in the structure. The procedures shall bear the approval of the CWB and shall be accompanied by documentary proof that the procedures have been qualified by the CWB at the plant where the Work is to be carried out. Welding procedures shall be reviewed by the Owner's Representative prior to use on the structure.

The procedures shall include the following information: joint type, surface preparation, welding process, welding position, base metal specification, welding consumable specification and size, preheat requirements, amperage and voltage requirements, speed, polarity, and welding equipment. Additional information, as described in CSA W47.1-03, Appendix C, shall also be included in the procedures.

Tack welds, where permitted, shall be done by qualified welders using the smallest size weld required to hold the components of the assembly together. Tack welds and temporary welds shall be subject to the requirements of AWS D1.5 Clauses 3.3.7, 3.3.8 and 12.13.

		UWU ENGINEERING 101 OWO Street - Sui Vancouver, BC V10 0 TEL: 778-888.888 WEB: www.uwu.ca	UBC	UI SUSTAINA MUNICIP SOUT	BC SEE BILITY AL ENGI HERN CA	DS PROGRAM IEERING MPUS				
sc	ALE 1:40	CAD FILENAME	L-445-446 - EAST MALL 2020-12-03		WALKW EAST MA	AY				
REV	DATE	REVISIONS	SIGNATURE		RD					
						г	SIGNED N	U DATE	2020-12	-03
						QUALITY	ONTROL B	.0. DATE	2020-12	-03
				SENIOR DESIGNER		QUALITY AS	URANCE B	.O. DATE	2020-12	-03
				DATE 2020-12-03			DRAWNN	1.L. DATE	2020-12	-03
				FILE NUMBER	PROJECT NUMBER	RE	3 DRAWING	NUMBER	R	EV
				20-0001	00000-00001	F	D-445-4	45-503	1	-
Appendix C - Synchro Analysis Results Table

#### Synchro Analysis Results - 2040

AM

Intersections	Measure	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Agronomy	V/C	0.16	0.16	0.16	0.06	0.06	0.06	0.42	0.42	0.42	0.42	0.42	0.42
	LOS	А	А	А	A	А	А	В	В	В	В	В	В
	95th Percentile Queue	0.16	0.16	0.16	0.06	0.06	0.06	0.42	0.42	0.42	0.42	0.42	0.42
Thunderbird	V/C		0.33		0.66	0.24			0.91			0.2	
	LOS		В		C C	В			С			А	
	95th Percentile Queue		21.4		#46.4	14.1			#146.9			15.1	
Logan Lane	V/C			0.02					0.41			0.17	0.17
	LOS			А					А			А	А
	95th Percentile Queue			0.4					0			0	0
Eagles Dr	V/C	0.03		0.03				0.01	0.4			0.18	0.18
	LOS	В		В				A	А			А	А
	95th Percentile Queue	0.6		0.6				0.1	0			0	0
Stadium	V/C	0.62		0.62				0.15	0.5			0.26	0.26
	LOS	D		D				A	А			А	А
	95th Percentile Queue	31.3		31.3				4	0			0	0

PM		_						_			_		
Intersection	Measure	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Agronomy	V/C	0.23	0.23	0.23	0.33	0.33	0.33	0.27	0.27	0.27	0.53	0.53	0.53
	LOS	В	В	В	В	В	В	В	В	В	В	В	В
	95th Percentile Queue	-	-	-	-	-	-	-	-	-	-	-	-
Thunderbird	V/C		0.24		0.77	0.17			0.7			0.79	
	LOS		А		C	А			В			С	
	95th Percentile Queue		18.5		#62.0	13.6			24.4			#81.2	
Logan Lane	V/C			0.01					0.24			0.37	0.37
	LOS			В					А			А	А
	95th Percentile Queue			0.3					0			0	0
Eagles Dr	V/C	0.02		0.02				0.01	0.24			0.37	0.37
	LOS	В		В				A	А			А	А
	95th Percentile Queue	0.4		0.4				0.2	0			0	0
Stadium	V/C	0.53		0.53				0.32	0.32			0.43	0.43
	LOS	D		D				A	А			А	А
	95th Percentile Queue	22.2		22.2				10.3	10.3			0	0

Appendix D - PC SWMM / QGIS Inputs and Results

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
ET (mm/d)	0.5	0.8	1.3	2.3	3.3	3.5	3.7	3.2	2.2	1	0.5	0.4

#### **Evapotranspiration Parameters**

#### Rain Garden Parameters

		_	Rain Garden Parameters	
Layer	Parameter	Value	Source	Notes
	Berm height (mm)	203.2	Rain Gardens - A How to Manual [3]	Typical Value
Surface	Vegetation Volume (fraction)	0.1	SWMM User's Manual Version 5.1 Appendix C.13 [4]	dense vegetation growth
	Surface roughness (Manning's n)	0.24	SWMM User's Manual Version 5.1 Appendix A.6 [4]	dense grass
	Surface slope (percent)	2	Default value in SWMM	Typical Value
	Thickness (mm)	450	SWMM User's Manual Version 5.1 Appendix C.13	Typical Value
	Porosity (volume fraction)	0.453	SWMM User's Manual Version 5.1 Appendix A.2 [4]	Sandy Loam
	Field capacity (volume fraction)	0.19	SWMM User's Manual Version 5.1 Appendix A.2	Sandy Loam
Soil	Wilting point (volume fraction)	0.085	SWMM User's Manual Version 5.1 Appendix A.2	Sandy Loam
	Conductivity (mm/hr)	11	SWMM User's Manual Version 5.1 Appendix A.2	Sandy Loam
	Conductivity slope	27	SWMM User's Manual Version 5.1 Appendix C.13	0.48(%Sand) + 0.85(%Clay).
	Suction head (mm)	110	SWMM User's Manual Version 5.1 Appendix A.2	Sandy Loam
	Thickness (mm)	200	SWMM User's Manual Version 5.1 Appendix C.13	Typical Value
	Void ratio (voids/solids)	0.75	Default value in SWMM	Typical Value
Storage				Minimum infiltration rate of
	rate (mm/hr)	10.922	SWMM User's Manual Version 5.1 Appendix A.2	surrounding soil
	Clogging factor	0	-	-

#### Absorbent Landscape Parameters

	Horton Infiltration Parameters										
Parameter	Value	Source	Notes								
Maximum Infiltration Rate (mm/hr)	25.4	SWMM User's Manual Version 5.1 Appendix C.8 [4]	Moist Loam soil								
Minimum Infiltration Rate (mm/hr)	10.9	SWMM User's Manual Version 5.1 Appendix A.2	Saturated hydraulic conductivity of Loam								
Decay Constant	4	Default value in SWMM	Typical Value								
Dry Time (days)	7	Default value in SWMM	Typical Value								

Subcatchment Parameters											
Subcatchments Parameters											
Total Area         Rain Garden         Absorbent         Width         Slope         Imperv. Area											
Roadway (m2) (m2) Landscape (m2) Outlet (m) Flow Length (m) (%) Tre								Treated (%)			
West 16th Ave to Stadium Rd (S1)	6756	249	1132	J6	504.8	13.384	2	100			
Stadium Rd to Eagle Dr (S2)	4797	420	817	J5	286.8	16.726	2	100			
Eagles Dr to Thunderbird Blvd (S3)	3536	300	463	S2	194.6	18.119	2	100			
Thunderbird Blvd Intersection (S4)	9477	820	3131	S3	425.4	22.278	2	100			
Thunderbird Blvd to Agronomy Rd (S5)	7663	0	4412	J2	302.8	25.307	2	100			

#### Junction Inputs

Name	Invert Elev. (m)	Rim Elev. (m)	Depth (m)
J1	93.5	95.5	2
J2	93	95	2
J3	92.8	94.8	2
J4	93	95	2
J5	90.5	92.5	2
J6	89.7	91.7	2
J7	87	89	2
J8	84	86	2

#### Conduit Inputs

ſ			Outlet	Length	Roughnes				Diameter	
I	Name	Inlet Node	Node	(m)	s	Inlet Offset (m)	Outlet Offset (m)	Cross-Section	(m)	Slope (%)
ſ	C1	J1	J2	122.155	0.01	0.5	0.5	CIRCULAR	0.45	0.23
I	C2	J2	J3	41.358	0.01	0.5	0.5	CIRCULAR	0.45	0.28
Γ	C3	J4	J5	221.519	0.01	0.5	0.5	CIRCULAR	0.45	0.65
I	C4	J5	J6	133.361	0.01	0.5	0.5	CIRCULAR	0.45	0.34
I	C5	J6	J7	213.463	0.01	0.5	0.5	CIRCULAR	0.45	0.72
I	C6	J7	J8	122.388	0.01	0.5	0.5	CIRCULAR	0.45	1.40

							100		Suns							
	Area	Precip.	Runon	Evap.	Infiltratio	Imperv Runoff	Perv Runoff	Runoff Depth	Runoff Volume		Precip.	Runoff	Total Collecte	Pre-Dev. Peak Runoff	Peak Runoff	Post-Dev . Levels Improve
	(m2)	(mm)	(mm)	(mm)	n (mm)	(mm)	(mm)	(mm)	(MI)	GSI?	(m3)	(m3)	d	$(m^3/s)$	$(m^3/s)$	d?
			()	()	()	6-m	10nth/24-h	nour preci	pitation ev	rent	(	(	ŭ	(	(,0)	
	70.4650															
S1	6756	43.6	0	0.79	19.61	33.98	27.36	10.43	0.07	YES	294.5	8		0.02	0.02	YES
S2	4797	43.6	0	0.77	25.13	31.99	25.55	0	0	YES	209.1	0		0.01	0	YES
S3	3536	43.6	0	0.78	21.93	33.91	29.04	0	0	YES	154.1	0	90.24%	0.01	0	YES
S4	9477	43.6	0	0.67	30.82	25.01	14.27	0	0	YES	413.1	0		0.03	0	YES
S5	7663	43.6	0	0.47	34.38	18.11	8.7	8.7	0.07	NO	334.1	66.66		0.02	0.02	YES
2-year/24-hour precipitation event																
S1	6756	56.9	0	0.79	20.1	44.56	40.02	23.01	0.16	YES	384.4	155.4		0.02	0.02	YES
S2	4797	56.9	0	0.78	26.56	41.95	37.54	0.12	0	YES	272.9	0.57		0.02	0	YES
S3	3536	56.9	0	0.78	23.17	44.47	41.1	3.63	0.01	YES	201.1	12.83	84.15%	0.01	0	YES
S4	9477	56.9	0	0.75	37.93	32.79	24.89	0	0	YES	539.2	0		0.03	0	YES
S5	7663	56.9	0	0.56	40.38	23.75	15.9	15.9	0.12	NO	436.0	121.84	1	0.02	0.02	YES
	•		•	•		5-	year/24-h	our precip	itation eve	ent	•	-	•			•
S1	6756	72.19	0	0.79	20.47	56.73	54.61	37.9	0.26	YES	487.7	256.05		0.03	0.03	YES
S2	4797	72.19	0	0.78	27.58	53.41	51.35	13.27	0.06	YES	346.2	63.65	1	0.02	0.01	YES
S3	3536	72.19	0	0.79	24.01	56.61	54.99	17.57	0.06	YES	255.26	62.12	73.13%	0.02	0.01	YES
S4	9477	72.19	0	0.77	39.58	41.74	38.33	3.71	0.04	YES	684.1	35.15		0.04	0	YES
S5	7663	72.19	0	0.67	44.28	30.23	27.18	27.18	0.21	NO	553.1	208.2		0.03	0.03	YES

PCSWMM Results



*Junction 1 to 3 During 5-year 24-hour precipitation (Left) Junction 4 to 8 During 5-year 24-hour precipitation (Right)* 



QGIS Flow accumulation model of UBC Campus (Opacity of Whitelines = Density of Flow)

Appendix E - Pedestrian Walkway Calculations

## Cantilever Structure Load Demand

Unfactored Dead Load											
				1							
Column Weight	=	1.6927155	kN	Ī							
Section used	=	HS219x9.5		Ī							
linear weight of section	=	49.3	kg/m	Ī							
height	=	3.5	m	Ī							
				Ī							
Cantilever Weight	=	1.0229373	kN	Ī							
Section Used	=	HS178x127x9.	5	I							
linear weight of section	=	40.9	kg/m	Ī							
cantilever horizontal length	=	2.5	m	I							
cantilever height	=	0.5	m								
cantilever length	=	2.5495098	m	I							
Beam Weight (2 beams)	=	0.3562992	kN								
beam span	=	4	m								
Section Used	=	HS51x25x4.	8								
linear weight of section	=	4.54	kg/m								
Joists Weight (per span)	=	0.1187664	kN								
joist spacing	=	0.6	m								
number of joists	=	8									
approx. weight of 1 joist	=	1.5133333	kg/m								
Load applied to 1 cantilever	=	0.2375328	kN								
distributed load	=	0.093168	kN/m								
include 25% for glass panels	=	0.11646	kN/m	ſ							

Wind Load (S6-19 Table A3.1.1)										
Hourly mean wind pressure, (10 yr return)	=	360	Pa							
Hourly mean wind pressure, (25 yr return)	=	430	Pa							
Hourly mean wind pressure, (50 yr return)	=	480	Pa							
Hourly mean wind pressure, (100 yr return)	=	530	Pa							
wind load on glass > transferred to cant.	=	1920	N/m							
column width/diameter	=	0.219	m							
wind load on column	=	105.12	N/m							

Snow Load	I (NBCC 20	15, 4.1	.6)		
Ground Snow Load	Ss	=	2.5	kPa	
Associated Rain Load	Sr	=	0.3	kPa	
Importance Factor	ls	=	0.8	(low)	
Wind exposure factor	Cw	=	1		
Basic Roof Snow Load Factor	Cb	=	1.6		
Slope Factor	Cs	=	1	(for angle	< 15)
Specific Weight of Snow	γ	=	3.275	kN/m ³	
Accumulation Factor	Ca	=	1		
Specified Snow Load	S	=	3.44	kPa	
distributed load on cantileve	r	=	13.76	kN/m	
				1	

SAP2000 RESULTS FOR LOAD DEMAND							
LOAD CASE 1: 1.4D							
Column Axial	N	=	3.25	kN			
Cant. Axial	N	=	0.32	kN			
Max. Column Cant Mom	еM	=	2.05	kNm			
LOAD CASE 3: 1.25D + 1	.5S + 0.4	W (governin	<u>g)</u>				
Column Axial	N	=	57.45	kN			
Cant. Axial	N	=	10.61	kN			
Max. Column Moment	М	=	71.72	kNm			
Max. Cant Moment	M	=	70.11	kNm			
LOAD CASE 4: 1.25D + 1	.4W + 0.	<u>5S</u>					
Column Axial	Ν	=	27.17	kN			
Cant. Axial	Ν	=	3.73	kN			
				-			
Max. Column Moment	M	=	38.14	kNm			

Bending Moment Diagram



211

## Beam Load Demand

Unfactored	Dead Lo	ad	
Column Weight	=	1.6927155	kN
Section used	=	HS219x9.5	
linear weight of section	=	49.3	kg/m
height	=	3.5	m
Cantilever Weight	=	1.0229373	kN
Section Used	=	HS178x127x9.	5
linear weight of section	=	40.9	kg/m
cantilever horizontal length	=	2.5	m
cantilever height	=	0.5	m
cantilever length	=	2.5495098	m
Beam Weight (2 beams)	=	0.3562992	kN
beam span	=	4	m
Section Used	=	HS51x25x4.	8
linear weight of section	=	4.54	kg/m
Joists Weight (per span)	=	0.1187664	kN
joist spacing	=	0.6	m
number of joists	=	8	
approx. weight of 1 joist	=	1.5133333	kg/m
Deadload applied to 1 beam	=	0.0593832	kN/m

DISTRI	BUTED LOA	D ON	BEAM	
LOAD CASE 1: 1.4D				
		=	0.08313648	kN/m
LOAD CASE 3: 1.25D + 1.5	5S + 0.4W (	gover	ning)	
		=	6.764229	kN/m
LOAD CASE 4: 1.25D + 1.4	1W + 0.5S			
		=	3.064229	kN/m
Max moment	м	=	13.528458	kNm

Wind Load (S6-19 Table	a A3.1.	1)	
Hourly mean wind pressure, (10 yr return)	=	360	Pa
Hourly mean wind pressure, (25 yr return)	=	430	Pa
Hourly mean wind pressure, (50 yr return)	=	480	Pa
Hourly mean wind pressure, (100 yr return)	=	530	Pa
wind load on glass > transferred to cant.	=	1920	N/m
column width/diameter	=	0.219	m
wind load on column	=	105.12	N/m
Wind load applied to 1 beam	=	0.6	kN/m

Snow Load	I (NBCC 20	15. 4.1	.6)		
Ground Snow Load	S _s	=	2.5	kPa	
Associated Rain Load	Sr	=	0.3	kPa	
Importance Factor	l _s	=	0.8	(low)	
Wind exposure factor	Cw	=	1		
Basic Roof Snow Load Factor	Cb	=	1.6		
Slope Factor	Cs	=	1	(for angle	< 15)
Specific Weight of Snow	γ	=	3.275	kN/m ³	
Accumulation Factor	Ca	=	1		
Specified Snow Load	S	=	3.44	kPa	
distributed load on cantilever		=	13.76	kN/m	
Snow load applied to 1 beam	n	=	4.3	kN/m	

## **Steel Section Checks**

Column	HS219x9.5	
Cantilever	HS178x127x9.5	

yield strength	Fy	=	350	MPa	
C	olumn Che	ck			
moment stress in column, $\sigma$	My/I	=	227.737	MPa	
capacity		=	315	MPa	
	D/C	=	0.722975		ОК
axial force in column	Ν	=	57.45	kN	
compression capacity	C _r	=	1635.543	kN	
	φ	=	0.9		
	λ	=	0.628107		
	D/C	=	0.035126		ОК

Cantilever Check									
moment stress in colum	My/I	=	287.2248387	MPa					
capacity		=	315	MPa					
	D/C	=	0.911824885		ОК				

	Bearing Cap	acity					
	φ _c	=	0.65		P = 0	OF of f	
	f'c	=	20	MPa	$B_r = 0$	$\cos \varphi_{c}  _{c}$	1
bearing area required	A ₁	=	5199.095	mm ²	[SMALLER	THAN HSS	SECTION]
Plate Chosen	PL	=	250mm x 2	250mm )	<u>k 1</u> 5mm		

### Beam HS102x51x9.5

yield strength	Fy	=	350	MPa	
	Beam Cheo	:k			
moment stress in column, σ	My/I	=	287.5505	MPa	
capacity		=	315	MPa	
	D/C	=	0.912859		ОК
LTB moment capacity	Mr	=	25.528	kNm	ОК
	D/C	=	0.529946		

## Beam Column (P-Delta Effects) Check

Lin	nit State 1 -	Cros	s Sectional S	trength			
Compressional resistance	C,	=	1975.05	kN			
•	ф	=	0.9				
Moment resistance in x	M _{rx}	=	131.985	kNm			
	φ.	=	0.9	)			
	CLASS	=	1	[1, 2, 3]			
Moment resistance in y	M _{rv}	=	131.985	kNm			
	φ	=	0.9				
	CLASS	=	1	[1, 2, 3]			
amplification factor	U _{1x}	=	1	must be >	= 1		+
curvature (ratio of smaller	/Іак	=	1	[- for sing	le curvati	ure, + for d	out
no transverse loads	ω1	=	0.4				
distributed loads/close spa	αςεω1	=	1				
concentrated loads	ω1	=	0.85				_
final ω1	ω1	=	0.4	[choose fr	om above	e 3]	+
	Cf	=	57.45	kN			
	Ce	=	5559.2057				
	β	=	0.6				
	λ _γ	=	0				_
$+\frac{0.85U_{1x}M_{fx}}{M}+\frac{\beta U_{1y}M_{fy}}{M} \le 1.0$	Left Side	=	0.4909737	(Class 1,2	OK		-
M _{rx} M _{ry}		=	0.572483	(Class 3)	OK		-
M M	Left Side	=	0.5433951		ОК		
$\frac{101_{\text{fx}}}{100_{\text{fx}}} + \frac{101_{\text{fy}}}{100_{\text{fy}}} \le 1.0$							

Lin	nit State 2	- Overall	Member S	trength		
Compressional resistance	C _r	=	1635.54	kN		
	ф	=	0.9			
	n	=	1.34	[1.34 for r	olled, 2.24	for built ι
	λ _x	=	0.62811			
	λ	=	0.62811			
final λ	λ	=	0.62811	[choose m	nax of 2 ab	ove,
				if uniaxial	bending t	hen
				buckling a	bout bend	ing axis]
Moment resistance in x	Mm	=	131.985	kNm		
Moment resistance in y	M _{ry}	=	131.985	kNm		
amplification factor	U _{1v}	=	0.40418	[for brace	d, 1 for un	braced]
amplification factor	U _{1y}	=	0.40418	for brace	d, 1 for un	braced]
	β	=	0.85			
0.85U. M. BU.M.	Left Side	=	0.22181	(class 1,2	ок	
$+ \frac{1}{M_{rx}} + \frac{1}{M_{ry}} \le 1.0$		=	0.25475	(class 3)	ОК	
M M	Left Side	=	0.5434		ОК	
$\frac{M_{fx}}{M} + \frac{M_{fy}}{M} \le 1.0$						
IVE IN IVE IVE						

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 11 = 0. = 13 = 3. = 3. = 11 = 11 = 11 = 11 = 12 = 12 = 12 = 12	335.54 62811 81.985 1 1E+12 2.5 3000 0.9 5847.3 3.2555 81.985 110.25 3.8675	kNm [1, 2, 3] mm ⁶ [enter whi [for end m mm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
Compressional resistant $\mathbf{v}_r$ - $\lambda$ -         Moment resistance in x $\mathbf{M}_{rx}$ -         CLASS       -         warping constant $C_w$ -         w2       -       -         unbraced length       L       - $M_u$ -       -         If Class 1 or 2       -       -         Mp       -       -         If Class 1 or 2       -       -         Mr       -       -         If Class 3       -       -         Mr       -       -       -         Moment resistance in y       Mr,       -       -         Moment resistance in y       Mr,       -       -         amplification factor       U1x       -       -	- 11 - 0. - 13 - 13 - 13 - 13 - 13 - 14 -	62811 <b>31.985</b> 1 1E+12 1 2.5 3000 0.9 5847.3 <b>346.65</b> <b>31.985</b> <b>31.985</b> <b>31.985</b>	kNm [1, 2, 3] mm ⁶ [enter whi [for end m mm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
Moment resistance in x $M_{rx}$ Image: CLASS       Image: CLASS         warping constant $C_w$ Image: CLASS       Image: CLASS         unbraced length       L       Image: CLASS       Image: CLASS         If Class 1 or 2       Image: CLASS       Image: CLASS       Image: CLASS         If Class 3       Image: CLASS       Image: CLASS       Image: CLASS         If Class 3       Image: CLASS       Image: CLASS       Image: CLASS         If Class 3       Image: CLASS       Image: CLASS       Image: CLASS         If Class 3       Image: CLASS       Image: CLASS       Image: CLASS         Image: CLASS       Image: CLASS       Image: CLASS       Image: CLASS         Image: CLASS       Image: CLASS       Image: CLASS	= 0. = 1: = 3. = 3. = 1: = 1:	31.985 1 1E+12 1 2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	kNm [1, 2, 3] mm ⁶ [enter whi [for end m mm kNm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
Moment resistance in x $M_{rx}$ I         CLASS       I         warping constant $C_w$ I         w       w2       I         w2       I       I         warping constant       L       I         w2       I       I         w1       L       I         w2       I       I         w1       L       I         Mu       L       I         Mu       M       I         If Class 1 or 2       Mp       I         Mr       I       I         If Class 3       Mr       I         Mr       I       I         Moment resistance in y       Mry       I         amplification factor       U1x       I         amplification factor       U1y       I	= 11 = 3. = 3. = 11 = 11 = 11 = 12 = 12 = 12 = 12 = 12	31.985 1 1E+12 1 2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	kNm [1, 2, 3] mm ⁶ [enter whi [for end m mm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
CLASS $=$ warping constant $C_w$ $=$ w2 $=$ $w_2$ $=$ unbraced lengthL $=$ $\phi$ $=$ $M_u$ $=$ If Class 1 or 2 $M_p$ $=$ 0.67Mp $=$ $=$ If Class 3 $M_r$ $=$ Moment resistance in y $M_{ry}$ $=$ amplification factor $U_{1x}$ $=$	= 3. = 3. = 11 = 11 = 11 = 11 = 11 = 11 = 11 = 1	1 1E+12 1 2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	[1, 2, 3] mm ⁶ [enter whi [for end m mm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
warping constant $C_w$ $a$ $\kappa$ $w_2$ $a$ unbraced lengthL $a$ $\phi$ $M_u$ $a$ If Class 1 or 2Mp $a$ If Class 3Mr $a$ If Class 3Mr $a$ Moment resistance in yMry $a$ Moment resistance in yMry $a$ amplification factorU1x $a$ U1y $a$ $a$	= 3. = 11 = 11 = 11 = 11 = 11 = 11 = 11 = 1	1E+12 1 2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	kNm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used] ly]
$\kappa$ $\kappa$ $w_2$ $w_2$ unbraced lengthL $\phi$ $m_1$ $m_1$ $m_2$ If Class 1 or 2 $m_2$ $M_p$ $m_2$ $M_p$ $m_2$ $M_r$ $m_1$ If Class 3 $m_r$ $M_r$ $m_1$ $M_r$ $M$	= 11 = 11 = 11 = 11 = 11 = 11 = 11 = 11	1 2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	[enter whi [for end m mm kNm kNm kNm kNm	ich k to be noments on [CHANGE]	used]  y]
$w_2$ a       unbraced length     L     a $\phi$ Mu     a       If Class 1 or 2     Mp     a       Mp     0.67Mp     a       If Class 3     Mr     a       Moment resistance in y     Mry     a       Moment resistance in y     Mry     a       amplification factor     U1x     a	= 11 = 11 = 11 = 12 = 12 = 12 = 12 = 12	2.5 3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	[for end m mm kNm kNm kNm kNm	CHANGE	Ιγ]
unbraced length     L     = $\phi$ $M_u$ =       If Class 1 or 2     Mp     =       0.67Mp     =       0.67Mp     =       If Class 3     -       Mr     =       If Class 3     -       Mr     =       Mr     =       Mr     =       Mr     =       Moment resistance in y     Mry       amplification factor     U1x       U1y     =	= 11 = 11 = 11 = 12 = 12 = 12 = 12 = 12	3000 0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	mm kNm kNm kNm kNm	[CHANGE]	
$\begin{array}{c c} \varphi & & a \\ M_u & & a \\ M_u & & a \\ M_p & & a \\ 0.67M_p & & a \\ 0.67M_p & & a \\ M_r & & a \\ 0.67M_y & &$	= 11 = 11 = 93 = 13 = 13 = 73 = 73	0.9 5847.3 146.65 3.2555 31.985 110.25 3.8675	kNm kNm kNm		
Mu       Image: second symbol         If Class 1 or 2       Mp       Image: second symbol $M_p$ 0.67Mp       Image: second symbol       Image: second symbol         If Class 3       My       Image: second symbol       Image: second symbol       Image: second symbol         If Class 3       My       Image: second symbol       Image: secon	= 10 = 90 = 11 = 12 = 75 = 75	5847.3 146.65 3.2555 31.985 110.25 3.8675	kNm kNm kNm kNm		
If Class 1 or 2       Mp       1         Mp       0.67Mp       1         Mr       1       1         If Class 3       1       1         My       1       1         Mr       0.67My       1         Moment resistance in y       Mry       1         amplification factor       U1x       1	= 98 = 98 = 11 = 72 = 72	146.65 3.2555 31.985 110.25 3.8675	kNm kNm kNm		
$\begin{array}{c c} M_{p} & = \\ 0.67M_{p} & = \\ M_{r} & = \\ & M_{r} & = \\ & & If \ Class \ 3 & & & \\ & & M_{r} & = \\ & & 0.67M_{y} & = \\ & & 0.67M_{y} & = \\ & & M_{r} & & = \\ & & M_{r} & & = \\ & & & M_{r} & & M_{r} & & = \\ & & & M_{r} \\ & & & M_{r} \\ & & & & M_{r} & &$	= 9; = 9; = 1; = 7; = 7;	146.65 3.2555 31.985 110.25 3.8675	kNm kNm kNm		
0.67Mp     =       Mr     =       If Class 3     =       My     =       0.67My     =       0.67My     =       Mr     =       Mr     =       Moment resistance in y     Mry       amplification factor     U1x	= 91 = 1 = : = : = :	3.2555 31.985 110.25 3.8675	kNm kNm		
Mr     If       If Class 3     My       0.67My     If       Mr     If       Moment resistance in y     Mry       amplification factor     U1x       U1y     If	= 1 = 7 = 7	31.985 110.25 3.8675	kNm		
If Class 3 M _y = 0.67M _y = M _r = Moment resistance in y amplification factor U _{1x} = U _{1y} =	= 7:	110.25			
M _y = 0.67M _y = M _r = Moment resistance in y M _{ry} = amplification factor U _{1x} = amplification factor U _{1y} =	= 7 = 7	10.25 3.8675	1.44		
0.67My     =       Mr     =       Moment resistance in y     Mry       amplification factor     U1x       unplification factor     U1y	= 7	3.8675	kNm		
Moment resistance in y M _{ry} amplification factor U _{1x} amplification factor U _{1y}	= !		kNm		
Moment resistance in y     Mry     :       amplification factor     U1x     :       amplification factor     U1y     :		99.225	kNm		
amplification factor U _{1x} = amplification factor U _{1y} =	- 1	81.985	kNm		
amplification factor U _{1y} :	= 0.	40418	[not less t	han 1 for b	raced, :
	= 0.	40418	[for brace	d, 1 for unb	raced]
-					
$\frac{0.85U_{1x}M_{fx}}{0.85U_{1x}M_{fx}} + \frac{\beta U_{1y}M_{fy}}{10} \le 1.0$	= 0	22181	(Class 1,2	ОК	
M _{rx} M _{ry}	= 0	.25475	(Class 3)	ОК	
M M Left Side					
$\frac{101_{\text{fx}}}{10} + \frac{101_{\text{fy}}}{10} \le 1.0$	=	0.5434		ОК	

## Seismic Lateral Force Calculation

2%/50 yea	ars (0.0004	104 per anni	um) prot	oability										
Distance	Latitude	Longitude	Sa (0.05)	Sa (0.1)	Sa (0.2)	Sa (0.3)	Sa (0.5)	Sa (1.0)	Sa (2.0)	Sa (5.0)	Sa (10.0)	PGA (g)	PGV (m/s)	
0.000	49,261	-123,247	0.467	0.711	0.879	0.886	0.785	0.441	0.266	0.083	0.030	0.382	0.575	

	FIND BAS	E SHEA	R		
height of the building	h _n	=	3.5	m	
fundamental period (moment frames)	Ta	=	0.217505	s	
fundamental period (braced frames)	Ta	=	0.0875	s	
spectral acc.	Sa	=	0.88	g	[from NRCAN]
amplification factor	F(T _a )	=	1		
design spectral acc.	S(T)	=	0.88		
	S(0.2)	=	0.879		[from NRCAN]
	S(0.5)	=	0.785		[from NRCAN]
	S(1.0)	=	0.441		[from NRCAN]
	S(2)	=	0.266		[from NRCAN]
seismic weight	w	=	7.5	kN	[calculate this]
	Mv	=	1		
importance factor	I _E	=	1		
	R _d	=	3.5		[assume moderately of
	Ro	=	1.5		
design base shear (lateral eq. force)	V	=	1.257143	kN	
	V _{min}	=	0.38	kN	
	V _{max}	=	1.121429	kN	
final design base shear	v	=	1.121429	kN	

## **Connections Calculation - Angles**

Deman	ds			
Distributed gravity loads on beam		6 787530	kN/m	
Total gravity loads on beam	=	27.15016	kN	
Lateral Load from Gravity Load	=	1.357508	kN	[assume 5% of gravity load]
Seismic Lateral Load	=	1.12	kN	[see seismic lateral load next page
Design lateral load L	=	2.477508	kN	

Angle section chosen	L51x51x6.4					
thickness of angle	t	=	6.4	mm		
Bolt tensile strength	Fub	=	825	MPa		
bolt diameter	d _b	=	12.7	mm	[1/2" bolt]	
nominal bolt area	A _b	=	126.6769	mm ²		
steel part tensile strength	Fu	=	450	MPa		
steel part yield strength	Fy	=	350	MPa		

	BOLT CAPA	CITY		1					
Threads not in shear plane									
	Vr	=	100.3281	kN					
	φ _b	=	0.8						
# of shear planes	m	=	1						
# of bolts in connection	n	=	2		[1 bolt or	each side c	of beam]		
Threads in shear plane									
	Vr	=	70.22966	kN	ОК	[assuming	worst case	e - threads in	n shear plane)
*if L >=760 mm, L being leng	th between e	ends bolts, t	hen 0.6 is n	ow 0.5					
Threads not in shear plane	Vr	=	83.60673	kN					
Threads in shear plane	Vr	=	58.52471	kN					
Bearing capacity									
	Br	=	175.5648	kN	ОК				
	φ _{br}	=	0.8						
thickness of material	t	=	6.4	mm	[angle thi	ckness gove	rns, beam	thickness = !	9.5mm]
bolt diameter	d	=	12.7	mm					





Summary of D/C	D/C
Bearing Resistance	26%
Bolt Shear Restance (Axial)	78%
Bolt Shear Resistance (Combined)	61%
Combined Compression and Shear	62%
Compression	46%
Column Bearing	20%
Column Punching Shear	45%
Beam Punching Shear	45%
Weld Strength (Weld Material) (Axial)	84%
Weld Strength (Fuse) (Axial)	64%

Bolt Resistance (Same for Both Inner and	l Outer Sleeve)	
Vr = 0.6*alpha_b*n*m*Ab*Fub*0.7		
alpha_b	0.8	
n	1	
m	1	
d	42	mm
Ab	1385.44236	mm^2
Fub	825	Mpa
Vr	384.0446223	kN
Axial Demand	300	kN
Shear Demand	0	kN
Axial D/C	78%	
Shear D/C	0%	
Combine D/C	61%	

# **Note:** Gusset plate assumed to act as a truss

Bearing Resistance		
Br = 3*alpha_br*n*t*d*Fu		
alpha_br	0.8	
n	1	
t	25.4	mm
d	42	mm
Br	1152.144	kN
Axial Demand	300	kN
Shear Demand	0	kN
Axial D/C	26%	
Shear D/C	0%	
Combine D/C	26%	

## Compression

Sienderness Check		
kL/r		
k	1	
L	500	mm
rx	36.08439182	mm
ry	7.332348419	mm
kL/rx	13.85640646	
kL/Ry	68.19097668	
Slenderness <= 200?	PASS	
Compressive Resistance		
Cr = alpha*A*Fy*(1 + lamda^2n)^(-1/n)		
alpha	0.9	
n	1.34	
lamda = kL/r*sqrt(Fy/(pi()^2*E)	0.908021355	
(1 + lamda^2n)^(-1/n)	0.652459045	
Cr	652.5406026	kN
Compression Demand	300	kN
Capacity	46%	
Column / Beam Bearing Resistance		
Br = 1.5*alpha*Fy*A		
alpha	0.9	
Fy	350	Mpa
Α	3175	mm^2
Br	1500.1875	kN
Demand (Max Tension,Compression)	300	kN
Capacity	20%	

Shear Failure	
Vr	alpha*Aw*Fs
alpha	0.9
h	125 mm
w	25.4 mm
Aw = ht	3175 mm^2
Aw (minus bolt holes)	3091 mm^2
h/w	4.921259843
kv	5.34
sqrt(Kv/Fy)	0.123519808
Fs	231 Mpa
Vr	642.6189 kN
Shear Demand	0 kN
Capacity	0%

## Weld Calculations

Neid - Axiai Strength						
Vr = 0.67*alphaw*Aw*Xu*(1+0.5*sin(theta						
alpha_w	0.67					
Throat	5.656854249	mm				
Perimeter	250	mm				
Aw	1414.213562	mm^2				
Xu	490	Mpa				
Theta	0	degrees				
Theta	0	radians				
Mw	1					
Vr	311.0718294	kN				
Axial Force	300	kN				
Assumed Angle	60	degrees				
Shear Componenet of Axial	259.8076211					
D/C	84%					

#### Base Metal Strength

Vr = 0.67*alphaw [*] Am*Fu	
alpha_w	0.67
Perimeter	250 mm
Am	2000 mm^2
Vr	404.01 kN
Axial Demand	259.8076211 kN
Axial D/C	64%



Shear Resistance (Axial Resistance)	Refer to AISC P	vianual for Shear	Design - Speci	ηποατιστή του τ	ne Desigi	TOJ HOHOW .	Structururs	becuons
V = alpha*Vn								
alpha	0.9							-
Vn = 0.3*Fy*Ag	329.175	kN					_	
V	296.2575	kN						$\geq$ —
					N			
a/D	0.04349612							
3.2*(E/Fy)^2/(D/t)^(2.5)	412.2875198							
D/t	22.99055614							
lamda_r = 0.114*E/Fy	65.14285714							
Check: D/t <= lamda_R	PASS					Plane o	of shear	failure
Axial Demand	205							
D/C	69%							

## **Moment Resistance**

Moment Demand							
Axial Force	205	kN					
Moment Arm	40.00	mm	= Depth of (	Cantilever / 2			マ
Moment Demand	8.20	kN*m	(Simplifying	Assumption Mag	de to be Conservative)		
						$\wedge$	
Moment Resistance (Half Circle)							
Mr = alpha*S*Fy							
Alpha	0.9					1	
S	49,143.14					\	
Mr	15.48	kN*m				\	
D/C	53%	5					
							Bending moment
							induced by cantilever
<b>Combined Moment and Shear Resis</b>	tance						· muuceu by cantilever

## D/C

Compression (From Compressive Force)												
Slenderness Check												
kL/r												
k	1											
L	158.74	mm										
rx	32.34833574	mm										
kL/rx	4.91											
Slenderness <= 200?	PASS											
Compressive Resistance (From Axial Fo	orce)											
Cr = alpha*A*Fy*(1 + lamda^2n)^(-1/n)												
alpha	0.9											
n	1.34											
lamda = kL/r*sqrt(Fy/(pi()^2*E)	0.07											
(1 + lamda^2n)^(-1/n)	0.999501818											
Cr	987.0330333	kN										
Compression Demand	150	kN										
Capacity	15%											

tension

Appendix F - Quantity Takeoff and Cost Estimate

	Item Description	Quantity	Units	Unit Cost	Total Price	Subtotal					
	Construction photographs and aerial photos - add for traffic control area	1.00	Ea	\$561	\$561						
	Surveying	1.58	ha	2,885.56	\$4,544.75						
	Clearing	0.68	ha	\$6,547	\$4,419						
Itio	Cold Milling Asphalt Pavement (W16 Ave - Thunderbird)	574.00	m3	\$40	\$22,926						
Darg	Subgrade Excavation (W16 Ave - Stadium)	1,011.00	m3	\$18	\$17,700	¢115 207					
reg	Common Excavation (W16-Ave - Stadium)	1,140.00	m3	\$5	\$6,104	\$115,207					
tel	Removing Curb and Gutter	1,500.00	m	\$35	\$52,129						
si	Removal and Disposal of Existing Signs 1 Post	10.00	units	\$111	\$1,114						
	Asphalt Surface (Removal and Dispose) - Asphalt Sidewalk	31.00	m3	\$36	\$1,109						
	Remove Concrete Surface (concrete sidewalk)	125.00	m2	\$37	\$4,600						
	Curb and Gutter All Heights	1,500.00	m	\$148	\$221,823						
	Solid Concrete Median (assume for bike buffer from road)	1,360.00	m2	\$148	\$201,120						
	Raised Cycle Track (one way)	1,360.00	m	\$292	\$397,414						
5	Concrete Sidewalk	318.00	m	\$249	\$79,034						
ţ,	Curb Ramps	8.00	Each	\$920	\$7,363						
stru	Bus Stop Curb Extentions (Standard Curb Extention)	1.00	Each	\$23,498	\$23,498	\$1 626 021					
l 5	Standard Curb Extention	3.00	Each	\$23,498	\$70,493	\$1,626,021					
ad	Green Curb Extension	7.00	Each	\$42,774	\$299,415						
8	Asphalt Concrete Pavement - EPS Mix Type H1 (PG58-34)	1,436.00	tonne	\$139	\$199,313						
	Granular Fill Pit Run (Des 6)	1,011.00	m3	\$119	\$120,572						
	Preparing Subgrade Surface (First Layer)	1,927.00	m2	\$1	\$2,712						
	Preparing Subgrade Surface (Second Layer)	1,927.00	m2	\$2	\$3,263						
	Intersection Lines - Supplying Paint and Painting	2.00	Each	Each Int.	\$621						
s	Roadway Lines - Supplying Paint and Painting (Directional Dividing and 2 Edge         1.50         km         \$820         \$1,230										
l io	Parking Stall Lines         1,360.00         m         \$3         \$3,526										
allat	High Visibility Crosswalk4.00Each\$3,029\$12,117										
nsta	RRFB         2.00         Each         \$31,514         \$63,029										
ic –	Left Turn Arrow	8.00	Each	\$228	\$1,825						
rafi	Bus Stop Sign Installation	2.00	Each	\$137	\$273						
	Cycling Wayfinding Signs	8.00	Each	\$301	\$2,410						
	Sign Installations (misc)	28.00	Each	\$137	\$3,828	1					
Walkway Insallation	Walkway Installation* (See walkway cost estimates for breakdown)	62.00	m	\$5,988	\$371,281	\$371,281					
ng	Utility structures and utility vaults precast concrete - 6' x 12' x 6' high, I.D., 6"	1.00	Each	\$15,088	\$15,087.70						
api	Utility line signs, markers, and flags	25.00	CLF	\$14	\$355.19						
dsc	Rain garden (median)	19,257.00	sqft	\$22	\$429,268.84						
Lan	Topsoil Supply and Place	5,602.00	m2	\$25	\$141,235.09						
pue	Adjust Catch Basin	26.00	Units	\$1,292	\$33,581.21	\$664,530					
SI, a	Adjust Manholes	12.00	Units	\$940	\$11,279.94						
Ű	Trenching and Backfilling	950.00	sqft	\$19	\$17,764.96						
lie	Tree transplanting, tree removal, trees - deciduous / shade (8'-10' high / dig &	170.00	each	\$69	\$11,679.63						
Ē	Sodding, bent grass sod, on sloped ground - over 6 M.S.F.	60.00	MSF	\$71	\$4,277.78						
	Total	•				\$2,865,899					
	Permitting (0.5%)					\$14,329					
	Bonding and Insurance Fee (5%)					\$143,295					
	With Management Fee (8%)					\$229,272					
	Contingency (10%)					\$325,279					
	With Contingency (10% Contingency)					\$3,578,074					

Walkway Price Estimate							
Component	terrer franktigter in the second s	Equivalent	Source Category	Assumptions	Unit Cost Quantity Units Quantity (Conve	rerted)	Price (O&P)
Surveying Surveying	Area (m*2) Area lacres) 352 0.0869995056	Topographical surveying, conventional, minimum RSM	eans Topographical Surveying	Average cost between maximum and minimum. If area is less t	\$2,226 0.08699950568 Acre		\$2,226
						Subtotal	\$2,226
Site Work and Demolition Converte Bernovial	Area Per Section (r Number Area (mi Area (yd2) 1 AM 16 73 66660	Concrata to 6" thick hudsould harmone much reinforced - 2500	aans Damolish Ramoua Panam	ant and Furbe	ζιλ <u>37 5558Λ</u> ς V		0380
	Length (m) Length (L.F.)				100 <b>100000.00</b> 100		cort
Awning Removal	26 85.30183727	Deconcstruction of wood components: Porch Roof Framing RSM	eans Deconstruction of Buidling	g Coi No value from RSMeans, similar category for wood framing use	52 5162 LF.		307.9396325
						Subtotal	\$696
Steel and Steel Fabrication	Section Cross Section · Kg/m Length Per Number Total Length Wei	ight (Ib) Total Material Cost. Shop Fabricated. Primed. Delivered RSM	eans Structural Steel Projects		\$2.475 11.30976 tonnes		\$27,992
Steel Structural Sections							
Cantilever	H5178x127x9.5 5210 40.9 2.5 18 45	4049.1 Structural Tubing, rect, 5" to 6" wide, light Section RSM	eans Columns, Structural		\$1.66 4049.1 lb		\$6,721.51
Light Beam	HS203x102x4.8 2760 21.7 4 16 64	3055.36 Structural Tubing, rect, 5" x 3" x 1/4" x 12".0" RSM	eans Columns, Structural		\$566 16 EA		\$9,056
Column	HS219A9.5 6270 49.3 3.5 18 63	6832.98 Interpolation of 8"-diameter x 14"-0" and 10"-diameter x 14 RSM	eans Columns, Structural	Interpolate between pipe prices for HSS section. Linear interpo	5793.11 18 EA		\$14,276.06 fr for 50
Surucural pean	077 7C % T/07 0TC7 C/EXTENDIOL	1995. 12 Ferimetion: Structural Tubing, Sq. 4 X4 X1/4 X12 - 0 3090.30 3585 13 Ferimetion: Structural Tubing on A"VA"V1/A"V1/A"V1 2584	eans columns, structural aane Columne Structural	Next smallest size (section not provided in ficknears) Navt smallast size (saction not provided in BSMaans)			00.028/00
Base Plate	Weight Der Set 16.5 18	297 Column Base Plate. Light. Up to 150 lb RSM	eans Structural Steel Projects		\$2.05 297 lb		\$608.85
Weight Increase Factor (see tab	ole below)	RSM	eans Structural Steel Properties	s Increase Based on Weight Factor	50.00%		\$37,140
Weight Factor	Max weight (tons) Weight Increase Total (tons) 11.30976						
0 Less than 2 tons	0 100.00% Increase Fac 50.00%						
2 to 9 tons	2 75.00%						
10 to 24 tons	9 50.00%						
25 to 49 tons	24 30.00%						
50 to 74 tons	49 20.00%						
75 to 99 tons	74 10.00%					Contractor	011 111
Steel Coatines and Finishes	Section Perimeter (mr.Leneth Surface Area Surface Area (S.E.)					20010191	GT#/TTTC
Cantilever	HS178x127x9.5 0.61 45 27.45 590.9386819	Non sacrificial, permanent non-stick coating, clear, on meta RSM	eans Graffiti Resistant Coatings		\$2.49 590.9386819 S.F.		\$1,471.44
Light Beam	HS203x102x4.8 0.612 64 39.168 843.2016864	Non sacrificial, permanent non-stick coating, clear, on meta RSM	eans Graffiti Resistant Coatings		\$2.49 843.2016864 S.F.		\$2,099.57
Column	H5219x9.5 0.6880087911 63 43.34455384 933.1137892	Non sacrificial, permanent non-stick coating, clear, on meta RSM	eans Graffiti Resistant Coatings		\$2.49 933.1137892 S.F.		\$2,323.45
Cantilever	HS178x127x9.5 0.61 45 27.45 590.9386819	Cold Galvanizing, brush in field RSM	eans Exterior Steel Coatings		\$0.57 590.9386819 S.F.		\$336.84
Light Beam	HS203x102x4.8 0.612 64 39.168 843.2016864	Cold Galvanizing, brush in field RSM	eans Exterior Steel Coatings		\$0.57 843.2016864 S.F.		\$480.62
Column	HS219x9.5 0.6880087911 63 43.34455384933.1137892	Cold Galvanizing, brush in field RSM	eans Exterior Steel Coatings		\$0.57 933.1137892 S.F.		\$531.87
						Subtotal	\$7.243.80
Steel Connections							
Anchor Bolts	6 18 108	Single Bolt Installed in Fresh Concrete, Hooked w/ nut and NSM	eans Anchor Bolts		\$5.49 108 E.A.		\$592.92
High Strengh Bolts	16 18 288	A325 Type 1, structural steel, bolt-nut-washer set RSM	eans High Strength Bolts	Assume all are 5/8" diameter (various types, assumed to be s	\$7.60 288 E.A.		\$2,188.80
Drilling Steel	16 18 288 Loonib Der Sommen Somment Tori (M. Tori Mold Londeb (6)	Drilling and layout for steel, up to 1/4" deep, no anchor RSM	eans Drilling Steel	Assume all ar 5/8" diameter	\$7.93 288 E.A.		\$2,283.84
Weld	2.8 18 50.4 165.3543301	Continuous fillet, stick welding, incl. equipment RSM	eans Welding Steel	Assume fillet welds, 3/16" - 1/4", ignore bevel welds	\$20.15 165.3543307 E.A.		\$3,331.06
Concrete	Volume (m^3) Volume   Number Total Volume (cu.vd)					Subtotal	\$8,396.62
Footings	818x819x400 0.2683044 0.353032 22 7.766706316	Footings (3000 psi), spread under 1 C.Y. RSM	eans 0330 Cast in Place Concret	te	\$369.60 7.766706316 C.Y.		\$2,870.57
	349x349x150 0.01827015 0.024035 22 0.528872763	Footings (3000 ps)), spread under 1 C.Y.	eans 0330 Cast in Place Concret	te	\$369.60 0.5288727632 C.Y.		\$195.47
Gutters and Drainage	Length [m] Length (I.f.)					Intolanc	F7Y'080'EC
Gutter	62 203.4120735	Copper gutters, half round, 16 ounce, stock units, 6" wide RSM	eans		\$16.10 203.4120735 LF.		\$3,274.93
Downspout	63 206.6929134	Copper downspouts, round, stock, 16 ounce, 4" diameter RSM	eans		\$15.51 206.6929134 L.F.		\$3,205.81
Glass Banals	Mildelth from 1 anomethe (rea) - A sear (sea 64)					Subtotal	56,480.74
Glass Panel	2.5 62 155 1668.406115	Glass, full vision window system, 3/4" inch glass mullions, 1 RSM	eans	Assumed window installation cost same as glass panel installat	\$82 1668.406115 S.F.		\$136,809
	to the second					Subtotal	\$136,809
Electrical	Number	Description Association and the Section Operation of the Market DEAA	anna - Bandaran Anna I mada aina	المعادميميا مميط بينينا الاستقامة فمحاذ مسارا مالمية مقاربينا المنبعا المنتمين	64 000 40 Ea		610,080
Burugn	10	Koadway Area Luminaire, Low Pressure Sodium, 135 Watt RSW	eans koadway Area Luminaire	Assumed roadway lumanaire equivalent of walkway lignung	71008 TO E3.		nen'nt¢
						Subtotal	\$10,080
						Total	\$286,417
	MARINA Const.		ז				



 Cost Development
 Percentage

 Surveying
 \$2,225

 Surveying
 \$2,225

 Surveying
 \$2,325

 Seef and Swell
 \$11,143

 Street cannot were
 \$2,324,33

 Street cannot were
 \$3,366,05

 Street cannot were
 \$3,366,05

 Street connection
 \$3,366,05

 Guitar sand Yould
 \$6,482,14

 Guitar sand Yould
 \$3,366,05

 Callar sand Yould
 \$3,366,05

 Callar sand Yould
 \$3,366,05

 Callar sand Yould
 \$3,366,05

Appendix G - Detailed Construction Schedule

Intermediate Calculations																														
Outputs																														
Project Start Date	Monday May 10, 2021	1																												
Total Number of Work Days	18	5																												
Done Before	Monday, January 31, 202	2																										Values for Ca	endar Calculations	
			Most Likely	Juration																										
Task ID	Task Name	Min (Days)	Max (Days) (Days	Simulated Days		Immediate	Predecss	or		FE of F	redeces	sor	E	5 EF		Immediate S	urcessor		15 of St	incessor		LS LF	TE	Critical?	Labels	ES	Earliest Done by	Latest Date Done by	Early Duration (Inc. Time Off)	Float (Inc. Time Off)
0	Start			0	0 0				0	0 0	0	0	0 0	0	1			0.0				0 0	0					-		
1	Complete bidding to contractors	1	10	7	8 0				0	0 0	0	0	0 0	8	2	5		83	127.5			0 8	0	Critical	Complete bidding to contractors*	2021-05-10	2021-05-20	2021-05-20	10	0
2	Mobilization	2	4	3	4 1				8 35	0 0	0	0	0 8	15 12	3	_		11.9				8 12	0	Critical	Mobilization*	2021-05-20	2021-05-26	2021-05-26	6	0
3	Setup traffic controls	1	1	1	1 2				11.9	0 0	0	0	0 11	9 13	4			12.9				12 13	0	Critical	Setup traffic controls*	2021-05-26	2021-05-27	2021-05-27	1	0
4	Construction stakeout	2	4	3	2 3				12.9	0 0	0	0	0 12	9 15	6			15.0				13 15	0	Critical	Construction stakeout*	2021-05-27	2021-06-01	2021-06-01	5	0
S	Stockpile precast material (walkway)	21	42	35	31 1				8.35	0 0	0	0	0 8.	15 39	34			158.	5			128 159	119		Stockpile precast material (walkway)	2021-05-20	2021-07-06	2021-12-24	47	171
6	A1 Northbound Demolitions	5	10	8	5 4				15	0 0	0	0	0 1	5 20	7			20.3				15 20	0	Critical	A1 Northbound Demolitions*	2021-06-01	2021-06-08	2021-06-08	7	0
7	A1 Utility Relocations	7	14	12	12 6				20.3	0 0	0	0	0 20	.3 32	8			32.1				20 32	0	Critical	A1 Utility Relocations*	2021-06-08	2021-06-24	2021-06-24	16	0
8	A1 Install Stormwater Systems	2	4	3	3 7				32.1	0 0	0	0	0 32	.1 36	9			35.5				32 36	0	Critical	A1 Install Stormwater Systems*	2021-06-24	2021-06-29	2021-06-29	5	0
9	AI Pavement Overlay	S	8	7	5 8				35.5	0 0	0	0	0 35	.5 41	10			40.9				36 41	0	Critical	A1 Pavement Overlay*	2021-06-29	2021-07-07	2021-07-07	8	0
10	A1 Curb Repair	2	5	4	4 9				40.9	0 0	0	0	0 40	.9 45	11			45.1				41 45	0	Critical	A1 Curb Repair*	2021-07-07	2021-07-14	2021-07-14	7	0
11	A1 Southbound Demolitions	5	10	8	8 10				45.1	0 0	0	0	0 45	.1 53	12			53.2				45 53	0	Critical	A1 Southbound Demolitions*	2021-07-14	2021-07-26	2021-07-26	12	0
12	A1 Install Stormwater Systems	2	4	3	3 11				53.2	0 0	0	0	0 53	.2 56	13			56.2				53 56	0	Critical	A1 Install Stormwater Systems*	2021-07-26	2021-07-29	2021-07-29	3	0
13	A1 Pavement Overlay	5	8	7	7 12				56.2	0 0	0	0	0 56	.2 63	14			63.4				56 63	0	Critical	A1 Pavement Overlay*	2021-07-29	2021-08-10	2021-08-10	12	0
14	A1 Curb Repair	2	5	4	4 13				63.4	0 0	0	0	0 63	.4 68	15			67.6				63 68	0	Critical	A1 Curb Repair*	2021-08-10	2021-08-16	2021-08-16	6	0
15	A2 Northbound Demolitions	5	10	8	8 14				67.6	0 0	0	0	0 67	.6 76	16			75.8				68 76	0	Critical	A2 Northbound Demolitions*	2021-08-16	2021-08-26	2021-08-26	10	0
16	A2 Utility Relocations	7	14	12	10 15				75.8	0 0	0	0	0 75	.8 86	17			85.9				76 86	0	Critical	A2 Utility Relocations*	2021-08-26	2021-09-10	2021-09-10	15	0
17	A2 Install Stormwater Systems	2	4	3	3 16				85.9	0 0	0	0	0 85	.9 89	18			88.7				86 89	0	Critical	A2 Install Stormwater Systems*	2021-09-10	2021-09-15	2021-09-15	5	0
18	A2 Pavement Overlay	5	8	7	6 17				88.7	0 0	0	0	0 88	.7 95	19			95.1				89 95	0	Critical	A2 Pavement Overlay*	2021-09-15	2021-09-24	2021-09-24	9	0
19	A2 Curb Repair	2	5	4	4 18				95.1	0 0	0	0	0 95	.1 99	20			99.2				95 99	0	Critical	A2 Curb Repair*	2021-09-24	2021-09-30	2021-09-30	6	0
20	A2 Southbound Demolitions	5	10	8	7 19				99.2	0 0	0	0	0 99	.2 107	21			106.	5			99 107	0	Critical	A2 Southbound Demolitions*	2021-09-30	2021-10-12	2021-10-12	12	0
21	A2 Install Stormwater Systems	2	4	3	2 20				107	0 0	0	0	0 10	7 109	22			109.	)			107 109	0	Critical	A2 Install Stormwater Systems*	2021-10-12	2021-10-15	2021-10-15	3	0
22	A2 Pavement Overlay	S	8	7	7 21				109	0 0	0	0	0 10	9 116	23			116.	)			109 116	0	Critical	A2 Pavement Overlay*	2021-10-15	2021-10-25	2021-10-25	10	0
23	A2 Curb Repair	2	5	4	3 22				116	0 0	0	0	0 11	6 119	24			119.	3			116 119	0	Critical	A2 Curb Repair*	2021-10-25	2021-10-29	2021-10-29	4	0
24	A3 Northbound Demolitions	S	10	8	9 23				119	0 0	0	0	0 11	9 128	25			127.	)			119 128	0	Critical	A3 Northbound Demolitions*	2021-10-29	2021-11-10	2021-11-10	12	0
25	A3 Utility Relocations	7	14	12	11 24				128	0 0	0	0	0 12	8 139	26			139.	)			128 139	0	Critical	A3 Utility Relocations*	2021-11-10	2021-11-26	2021-11-26	16	0
26	A3 Install Stormwater Systems	2	4	3	3 25				139	0 0	0	0	0 13	9 142	27			142.	1			139 142	0	Critical	A3 Install Stormwater Systems*	2021-11-26	2021-12-02	2021-12-02	6	0
27	A3 Pavement Overlay	5	8	7	6 26				142	0 0	0	0	0 14	2 148	28			148.	2			142 148	0	Critical	A3 Pavement Overlay*	2021-12-02	2021-12-10	2021-12-10	8	0
28	A3 Curb Repair	2	5	4	4 27				148	0 0	0	0	0 14	8 152	29			152.	8			148 152	0	Critical	A3 Curb Repair*	2021-12-10	2021-12-16	2021-12-16	6	0
29	A3 Southbound Demolitions	5	10	8	8 28			_	152	0 0	0	0	0 19	2 160	30			160.	)		_	152 160	0	Critical	A3 Southbound Demolitions*	2021-12-16	2021-12-28	2021-12-28	12	0
30	A3 Install Stormwater Systems	2	4	3	3 29				160	0 0	0	0	0 16	0 163	31	33		162.	5 168.8		_	160 163	0	Critical	A3 Install Stormwater Systems*	2021-12-28	2021-12-30	2021-12-30	2	0
31	A3 Pavement Overlay	5	8	7	6 30			_	163	0 0	0	0	0 16	3 169	32	37		168.	5 170.0		_	163 169	0	Critical	A3 Pavement Overlay*	2021-12-30	2022-01-07	2022-01-07	8	0
32	A3 Curb Repair	2	5	4	3 31			_	169	0 0	0	0	0 16	9 172	38			172.			_	169 172	0	Critical	A3 Curb Repair*	2022-01-07	2022-01-13	2022-01-13	6	0
33	Hill topsoli, seed rain garden	4	4	3	3 30			_	163	0 0	U	U	0 16	3 166	38	_	_	1/2.	1		_	169 172	ь		Fill topsoil, seed rain garden	2021-12-30	2022-01-04	2022-01-13	5	a
34	B1 Demotish curb for walkway footings	2	4	3	4 5				39.4	0 0	0	0	0 39	4 43	35			162.				159 162	119		B1 Demolish curd for walkway footin	2021-07-06	2021-07-12	2021-12-30	6	1/1
35	B1 Install walkway rooting + columns	5	9	8	9 34				43	0 0	0	0	0 4	\$ 52	36			171.				162 171	119		B1 Install walkway footing + columns	2021-07-12	2021-07-22	2022-01-12	10	1/4
36	B1 Install walkway roof		3	2	1 35				51.8	0 0	0	0	0 51	8 53	38			172.				171 172	119		B1 Install walkway root	2021-07-22	2021-07-23	2022-01-13	1	1/4
37	Field increation and as built as an		3		2 31	22 26	37		105	0 0	0 171	0	0 10	2 1/1	38			1/2.				170 172	1	Colitional	Repaint road markings	2022-01-07	2022-01-11	2022-01-13	1	2
38	Descelution and as built survey	-	10	0	0 32	35 36	37		172 1	00 52	.5 1/1	0	0 17	2 1//	39			1//.				172 1//	0	Critical	Preso inspection and as built survey*	2022-01-13	2022-01-20	2022-01-20	/	3
39	Demoonize		10		0 38				1//	0 0	0	0	0 17	7 185	40			184.	,			177 185	0	Critical	Demodalize	2022-01-20	2022-01-31	2022-01-31	11	J
40	PHILISH			0	0 39				100	0 0		0	0 15	3 185								105 185	0	Critical						





Work Buysin	Bonebjin
186	2022-01-31
177	2022-01-19
186	2022-02-01
193	2022-02-11
	186 177 186 193

Total Work Days: Cumulative Distribution

Appendix H - Roadway Life Cycle Analysis



#### Sample Global Warming Potential (kg $\text{CO2}_{e}$ ) & Costs for Select IRI Trigger Values

## Poor Maintenance Triggers (1.21,2.96,3.96) Only some values shown as sample. Charts display all analysis trigger values

#### Optimal Maintenance Range (3.16-3.56)

		IR	1.21						1	IRI 3.16				
	Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3		Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3	
Embodied GWP	1003684.55	60.67	984241.199	62.28	949276.775	63.1	Embodied GWP	367010.633	31.39	304571.828	28.79	268884.077	27.41	
Albedo GWP	-77846.5314	-4.71	-77846.5314	-4.93	-77846.5314	-5.17	Albedo GWP	-77846.5314	-6.66	-77846.5314	-7.36	-77846.5314	-7.93	
Lighting_GWP	108360.135	6.55	108360.135	6.86	108360.135	7.2	Lighting_GWP	108360.135	9.27	108360.135	10.24	108360.135	11.04	
Roughness GWP	229879.012	13.89	218488.929	13.83	211896.878	14.09	Roughness GWP	389468.789	33.31	380172.191	35.94	373019.6	38.02	
Deflection GWP	379797.173	22.96	336459.311	21.29	302059.197	20.08	Deflection GWP	375492.06	32.11	336079.127	31.77	302276.719	30.81	
Congestion GWP	6014.15147	0.36	5906.7863	0.37	5714.21572	0.38	Congestion GWP	2242.74672	0.19	1751.9043	0.17	1465.80063	0.15	
EOL GWP	4566.98779	0.28	4745.90994	0.3	4923.04286	0.33	EOL GWP	4566.98779	0.39	4745.90994	0.45	4923.04286	0.5	
Total GWP	1654455.48	100	1580355.74	100	1504383.71	100	Total GWP	1169294.82	100	1057834.56	100		100	
Construction Cost	186240.54	12.71	196731.666	13.83	206959.144	15.22	Construction Cost	186240.54	32.59	196731.666	39.35	206,959.14	46.13	
Maintenance Cost	1285330.63	87.73	1233660.25	86.72	1160578.6	85.37	Maintenance Cost	394834.414	69.09	308917.049	61.79	249908.311	55.7	
Salvage Value	-6550.58594	-0.45	-7893.96664	-0.55	-8058.72281	-0.59	Salvage Value	-9610.83583	-1.68	-5670.74949	-1.13	-8206.09651	-1.83	
Total Cost	1465020.59	100	1422497.95	100	1359479.02	100		571464.118	100	499977.965	100		100	
		IR	1 2.96			IRI 3.36								
	Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3		Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3	
Embodied GWP	388010.432	33.04	336974.413	31.36	283543.701	28.82	Embodied GWP	337604.539	29.25	296739.168	27.78	257565.265	26.05	
Albedo GWP	-77846.5314	-6.63	-77846.5314	-7.25	-77846.5314	-7.91	Albedo GWP	-77846.5314	-6.75	-77846.5314	-7.29	-77846.5314	-7.87	
Lighting_GWP	108360.135	9.23	108360.135	10.09	108360.135	11.01	Lighting_GWP	108360.135	9.39	108360.135	10.14	108360.135	10.96	
Roughness GWP	371511.834	31.64	365489.659	34.02	360343.731	36.63	Roughness GWP	403537.544	34.97	398919.539	37.34	392623.775	39.71	
Deflection GWP	377376.855	32.14	334737.093	31.15	302906.577	30.79	Deflection GWP	375794.993	32.56	335682.071	31.42	301663.002	30.51	
Congestion GWP	2366.70028	0.2	2005.02635	0.19	1573.36481	0.16	Congestion GWP	1995.50483	0.17	1749.04436	0.16	1428.70209	0.14	
EOL GWP	4566.98779	0.39	4745.90994	0.44	4923.04286	0.5	EOL GWP	4566.98779	0.4	4745.90994	0.44	4923.04286	0.5	
Total GWP	1174346.41	100	1074465.7	100	983,804.02	100	Total GWP	1154013.17	100	1068349.34	100	988,717.39	100	
Construction Cost	186240.54	30.84	196731.666	37.25	206959.144	43.88	Construction Cost	186240.54	34.4	196731.666	41.12	206959.144	48.09	
Maintenance Cost	424060.681	70.23	341948.229	64.75	271203.329	57.5	Maintenance Cost	361182.536	66.72	292483.606	61.13	233563.751	54.27	
Salvage Value	-6471.87683	-1.07	-10584.4067	-2	-6541.79679	-1.39	Salvage Value	-6093.46985	-1.13	-10734.6028	-2.24	-10171.2027	-2.36	
Total Cost	603829.344	100	528095.488	100	471620.676	100	Total Cost	541329.606	100	478480.669	100	430351.692	100	
		IR	1 3.96						1	IRI 3.56				
	Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3		Avg Des. 1	% Des. 1	Avg Des. 2	% Des. 2	Avg Des. 3	% Des. 3	
Embodied GWP	293428.719	25.31	255504.224	23.8	225155.149	22.44	Embodied GWP	331550.775	28.46	268015.726	25.42	232180.467	23.79	
Albedo GWP	-77846.5314	-6.71	-77846.5314	-7.25	-77846.5314	-7.76	Albedo GWP	-77846.5314	-6.68	-77846.5314	-7.38	-77846.5314	-7.97	
Lighting_GWP	108360.135	9.35	108360.135	10.1	108360.135	10.8	Lighting_GWP	108360.135	9.3	108360.135	10.28	108360.135	11.1	
Roughness GWP	452469.376	39.03	446647.355	41.61	439460.232	43.79	Roughness GWP	421451.086	36.17	413477.779	39.21	405102.255	41.5	
Deflection GWP	376596.127	32.48	334441.188	31.16	302285.732	30.12	Deflection GWP	375027.588	32.19	336139.082	31.88	302240.449	30.96	
Congestion GWP	1746.64221	0.15	1472.21309	0.14	1221.99972	0.12	Congestion GWP	2021.20548	0.17	1500.79504	0.14	1192.42159	0.12	
EOL GWP	4566.98779	0.39	4745.90994	0.44	4923.04286	0.49	EOL GWP	4566.98779	0.39	4745.90994	0.45	4923.04286	0.5	
Total GWP	1159321.46	100	1073324.49	100	1003559.76	100	Total GWP	1165131.24	100	1054392.9	100	976152.24	100	
Construction Cost	186240.54	38.85	196731.666	46.2	206959.144	53.77	Construction Cost	186240.54	35.8	196731.666	43.33	206959.144	50.79	
Maintenance Cost	301780.223	62.96	240533.383	56.49	189907.081	49.34	Maintenance Cost	345202.354	66.35	261914.445	57.69	205201.749	50.36	
Salvage Value	-8682.73124	-1.81	-11466.9806	-2.69	-11943.1479	-3.1	Salvage Value	-11172.0846	-2.15	-4655.43857	-1.03	-4696.46884	-1.15	
Total Cost	479338.032	100	425798.069	100	384923.077	100	Total Cost	520270.809	100	453990.672	100	407464.424	100	





